We have developed a new simulation algorithm for free-energy calculations. The method is a multidimensional extension of the replica-exchange method. While pairs of replicas with different temperatures are exchanged during the simulation in the original replica-exchange method, pairs of replicas with different temperatures and/or different parameters of the potential energy are exchanged in the new algorithm. This greatly enhances the sampling of the conformational space and allows accurate calculations of free energy in a wide temperature range from a single simulation run, using the weighted histogram analysis method.
Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations. For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by modes of motion external to the domains. To analyze the molecular dynamics trajectory, a principal component analysis tailored specifically to analyze interdomain motions is applied. A method based on the curl of the atomic displacements is described, which yields a sharp discrimination of domains, and which defines a unique interdomain screw-axis. Hinge axes are defined and classified as twist or closure axes depending on their direction. The methods have been tested on lysozyme. A remarkable correspondence was found between the first normal mode axis and the first principal mode axis, with both axes passing within 3 A of the alpha-carbon atoms of residues 2, 39, and 56 of human lysozyme, and near the interdomain helix. The axes of the first modes are overwhelmingly closure axes. A lesser degree of correspondence is found for the second modes, but in both cases they are more twist axes than closure axes. Both analyses reveal that the interdomain connections allow only these two degrees of freedom, one more than provided by a pure mechanical hinge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.