We describe a comprehensive detection system for 18 kinds of classical and newly described staphylococcal superantigenic toxin genes using four sets of multiplex PCR. Superantigenic toxin genotyping of Staphylococcus aureus for 69 food poisoning isolates and 97 healthy human nasal swab isolates revealed 32 superantigenic toxin genotypes and showed that many S. aureus isolates harbored multiple toxin genes. Analysis of the relationship between toxin genotypes and toxin genes encoding profiles of mobile genetic elements suggests its possible role in determining superantigenic toxin genotypes in S. aureus as combinations of toxin gene-encoding mobile genetic elements.
In addition to two known staphylococcal enterotoxin-like genes (selj and selr), two novel genes coding for two superantigens, staphylococcal enterotoxins S and T (SES and SET), were identified in plasmid pF5, which is harbored by food poisoning-related Staphylococcus aureus strain Fukuoka 5. This strain was implicated in a food poisoning incident in Fukuoka City, Japan, in 1997. Recombinant SES (rSES) specifically stimulated human T cells in a T-cell receptor V9-and V16-specific manner in the presence of major histocompatibility complex (MHC) class II ؉ antigen-presenting cells (APC). rSET also stimulated T cells in the presence of MHC class II ؉ APC, although its V skewing was not found in reactive T cells. Subsequently, we examined the emetic activity of SES and SET. We also studied SElR to determine emetic activity in primates. This toxin was identified in previous studies but was not examined in terms of possession of emetic activity for primates. rSES induced emetic reactions in two of four monkeys at a dose of 100 g/kg within 5 h of intragastric administration. In one monkey, rSET induced a delayed reaction (24 h postadministration) at a dose of 100 g/kg, and in the other one, the reaction occurred 5 days postadministration. rSElR induced a reaction in two of six animals within 5 h at 100 g/kg. On this basis, we speculate that the causative toxins of vomiting in the Fukuoka case are SES and SER. Additionally, SES, SER, and SET also induced emesis in house musk shrews as in the monkeys.Staphylococcus aureus produces a variety of superantigenic toxins (SAGTs), which selectively activate a vast number of T cells, depending on V elements in the  chain of a T-cell receptor (TCR), in direct association with major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APC) (14, 31). Staphylococcal SAGTs can be divided into three large groups and one minor group on the basis of similarity of amino acid sequences (31). Most toxins of the three groups, including staphylococcal enterotoxins A and B (SEA and SEB), exhibit strong emetic activity in primates (4, 16, 25); toxic shock syndrome toxin-1, grouped as the minor group, does not possess emetic activity in primates (14, 31). It is noteworthy that toxins designated SE-like toxins, such as SElP and SElR, which either have not been examined for emetic activity or have been reported not to have emetic activity, have been discovered in S. aureus strains (12,13,20,27). S. aureus strain Fukuoka 5 was isolated from food as the causative microbe in a food poisoning outbreak in Fukuoka City, Japan, in 1997, although this strain did not carry any well-recognized SAGT genes with emetic activity (19). Subsequently, Omoe et al. (19) discovered, using a plaque hybridization with a seg probe, that 2.8 kbp of the EcoRI fragment of plasmid pF5, carried by Fukuoka 5, carries two genes, a novel SAGT gene designated selr and a previously reported gene, selj (33).We undertook research to explore, using a PCR walking technique, whether there were addition...
Smoldering inflammation often increases the risk of progression for malignant tumors and simultaneously matures myeloid dendritic cells (mDCs) for cell-mediated immunity. PolyI:C, a dsRNA analog, is reported to induce inflammation and potent antitumor immune responses via the Toll-like receptor 3/Toll-IL-1 receptor domain-containing adaptor molecule 1 (TICAM-1) and melanoma differentiation-associated protein 5/IFN-β promoter stimulator 1 (IPS-1) pathways in mDCs to drive activation of natural killer cells and cytotoxic T lymphocytes. Here, we found that i.p. or s.c. injection of polyI:C to Lewis lung carcinoma tumor-implant mice resulted in tumor regression by converting tumor-supporting macrophages (Mfs) to tumor suppressors. F4/80− Mfs infiltrating the tumor respond to polyI:C to rapidly produce inflammatory cytokines and thereafter accelerate M1 polarization. TNF-α was increased within 1 h in both tumor and serum upon polyI:C injection into tumorbearing mice, followed by tumor hemorrhagic necrosis and growth suppression. These tumor responses were abolished in TNF-α −/− mice. Furthermore, F4/80 + Mfs in tumors extracted from polyI:Cinjected mice sustained Lewis lung carcinoma cytotoxic activity, and this activity was partly abrogated by anti-TNF-α Ab. Genes for supporting M1 polarization were subsequently up-regulated in the tumor-infiltrating Mfs. These responses were completely abrogated in TICAM-1 −/− mice, and unaffected in myeloid differentiation factor 88 −/− and IPS-1 −/− mice. Thus, the TICAM-1 pathway is not only important to mature mDCs for cross-priming and natural killer cell activation in the induction of tumor immunity, but also critically engaged in tumor suppression by converting tumor-supporting Mfs to those with tumoricidal properties.Toll-like receptor | tumor-associated macrophages | TRIF
During a sublethal murine infection with Listerid monocytogenes cells, tumor necrosis factor (TNF) activity was detectable in neither sera nor spleen homogenates at any stage of the infection when a bioassay with L-929 cells (<4 U/ml) was used. However, injecting the mice with an immunoglobulin fraction obtained from a rabbit hyperimmunized with recombinant murine TNF-a resulted in acceleration of listeriosis. When 1 mg of anti-TNF antibody was injected per mouse, all the mice died from listeriosis, even though the infectious dose was sublethal for the untreated controls. The antigen-specific elimination of the bacterium from the spleens and livers of anti-TNF antibody-treated mice was delayed, depending on the dose of the antibody injected. Endogenous TNF seemed to be produced early in infection, because suppression of antiisterial resistance was significant when a single injection of anti-TNF antibody was given between day zero and day 2 of infection. The effect of endogenous TNF on antilisterial resistance was due to neither regulation of alpha interferon (IFN-a) * Corresponding author. ably due to the induction of both TNF receptor expression and the accumulation of mRNA for TNF by IFN-y (6, 35). Furthermore, the increased expression of major histocompatibility complex class I antigens by TNF is reported to be mediated by TNF-induced IFN-3 subtype 1 (IFN-fi1) or 0.01 M phosphate-buffered saline (PBS; pH 7.4).
We identified and characterized a novel staphylococcal enterotoxin-like putative toxin, which is named SER. Nucleotide sequencing analysis of the ser gene revealed that ser was most closely related to the seg gene. The ser gene product, SER, was successfully expressed as a recombinant protein in an Escherichia coli expression system, and recombinant SER (rSER) showed significant T-cell stimulation activity. The SER production in ser-harboring Staphylococcus aureus strains was confirmed by Western blot analysis using anti-rSER antibody. Moreover, ser was seen to be encoded by at least two types of plasmids. In particular, one kind of plasmid encoding the ser gene has been known as a sed-and sej-carrying pIB485-related plasmid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.