Recently, owing to the performance improvement of the headspace (HS)-sampling devices and its consumables, HS vial samples can be analyzed at temperatures up to 300°C. Some studies have attempted to analyze polycyclic aromatic hydrocarbons (PAHs) in atmospheric 2.5 µm particulate matter (PM 2.5) collected on filter paper by gas chromatography/mass spectrometry (GC/MS) coupled with thermal desorption device. However, no studies have reported the use of an HS-sampling device to quantify PAHs in PM 2.5 filter paper. In this study, we found that the quantification of PAH analysis using HS-GC/MS can be improved by the following steps, so that the accuracy becomes almost the same as that of a solvent-extraction method: 1) replacement of the air in the HS vial with nitrogen, 2) limiting the solvent to toluene, 3) using hydrolyzed polyimide-covered septum, and 4) optimization of the heating temperature and heating time of the HS vial.As a result, we succeeded in protecting PAHs in an HS vial at a high temperature and in creating an analysis method with a high recovery rate and high repeatability; the limit of quantitation of each PAH in this method was 5.4 pg m −3 in the case of a volume of 10,080 m 3 of air being collected on the filter paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.