Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is the most rapidly turned over mammalian enzyme. We have shown that its degradation is accelerated by ODC antizyme, an inhibitory protein induced by polyamines. This is a new type of enzyme regulation and may be a model for selective protein degradation. Here we report the identification of the protease responsible for ODC degradation. Using a cell-free degradation system, we demonstrate that immunodepletion of proteasomes from cell extracts causes almost complete loss of ATP- and antizyme-dependent degradation of ODC. In addition, purified 26S proteasome complex, but not the 20S proteasome, catalyses ODC degradation in the absence of ubiquitin. These results strongly suggest that the 26S proteasome, widely viewed as specific for ubiquitin-conjugated proteins, is the main enzyme responsible for ODC degradation. The 26S proteasome may therefore have a second role in ubiquitin-independent proteolysis.
There is a debate over how protein trafficking is performed through the Golgi apparatus. In the secretory pathway, secretory proteins that are synthesized in the endoplasmic reticulum enter the early compartment of the Golgi apparatus called cis cisternae, undergo various modifications and processing, and then leave for the plasma membrane from the late (trans) cisternae. The cargo proteins must traverse the Golgi apparatus in the cis-to-trans direction. Two typical models propose either vesicular transport or cisternal progression and maturation for this process. The vesicular transport model predicts that Golgi cisternae are distinct stable compartments connected by vesicular traffic, whereas the cisternal maturation model predicts that cisternae are transient structures that form de novo, mature from cis to trans, and then dissipate. Technical progress in live-cell imaging has long been awaited to address this problem. Here we show, by the use of high-speed three-dimensional confocal microscopy, that yeast Golgi cisternae do change the distribution of resident membrane proteins from the cis nature to the trans over time, as proposed by the maturation model, in a very dynamic way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.