Previous cancer chemoprevention studies from our laboratories and by other investigators have demonstrated that the extract of red beetroot (Beta vulgaris L.), the FDA approved red food color E162, can be effective in suppressing the development of multi-organ tumors in experimental animals. To further explore this finding, we have compared the cytotoxic effect of the red beetroot extract with anticancer drug, doxorubicin (adriamycin) in the androgen-independent human prostate cancer cells (PC-3) and in the well-established estrogen receptor-positive human breast cancer cells (MCF-7). This red colored anticancer antibiotic was selected for comparative cytotoxic study because its chemical structure with a planar configuration of an aromatic chromophore attached to a sugar molecule is remarkably similar to that of betanin, the beetroot extract constituent primarily responsible for its red color. Both doxorubicin and the beetroot extract exhibited a dose-dependent cytotoxic effect in the two cancer cell lines tested. Although the cytotoxicity of the beetroot extract was significantly lower when compared to doxorubicin, it continued to decrease the growth rate of the PC-3 cells (3.7% in 3 days vs. 12.5% in 7 days) when tested at the concentration of 29 µg/ml. In contrast, doxorubicin, at the same concentration level, completely inhibited the growth of the PC-3 cells in three days. Similarly, comparative studies in the normal human skin FC and liver HC cell lines showed that the beetroot extract had significantly lower cytotoxic effect than doxorubicin (8.6% vs. 100%, respectively, at 29 µg/ml concentration of each, three-day test period). The results suggest that betanin, the major betacyanin constituent, may play an important role in the cytotoxicity exhibited by the red beetroot extract. Further studies are needed to evaluate the chemopreventive potentials of the beetroot extract when used alone or in combination with doxorubicin to mitigate the toxic side-effects of the latter.
Although a wide variety of cytotoxic plant extracts and phytochemicals are known to act synergistically with anticancer drug doxorubicin (D), their clinical application is hindered by safety concerns of such combination therapy. Our earlier studies showed that red beetroot (Beta vulgaris L.) extract (B), approved by Food and Drug Administration and European Union as red food color E162, reduced multi-organ tumor formations in various animal models when administered in drinking water. This led us to postulate that a long-term daily exposure to low doses of B through diet might be safe and sufficient to produce cancer chemopreventive effect in humans. Further, our recent comparative cytotoxic investigation with B and D in several human cancer cell lines indicated their potential for synergistic activity. Since B is considered safe for human use with no known toxicity, we conducted the present study to evaluate its synergistic antiproliferative activity with D against pancreatic (PaCa), breast (MCF-7) and prostate (PC-3) tumor cells of human origin. Different concentrations of B and D (0.29-290 μg/ml) and in various combinations (B:D ratio = 1:0, 1:1, 5:1, 1:5 and 0:1) were tested for cytotoxic effects against the three cancer cells. The viability of cells was assessed after 72 h incubation with various combinations of B and D using the trypan-blue staining method. The cytotoxic data were analyzed by the combination index method of Chou and Talalay to establish synergy between B and D. The results indicated that an overall positive reduction in drug concentration was achieved by D when combined with B in its cytotoxicity profile in the three human cancer cells tested. The synergistic cytotoxicity was best when the B:D ratio of 1:5 was used in PaCa cells at IC50, IC75 and IC90 dose levels and in MCF-7 cells at IC90 dose level. These results warrant further studies on the potential of red beetroot extract-doxorubicin combination in treating human cancers.
We have developed an efficient method for the preparation of enol silyl ethers using novel agents, silazanes together with NaH or DBU catalyst, wherein TMS and TBDMS groups were smoothly and chemoselectively introduced into ketones and aldehydes under mild conditions.
Abstract:We have developed an efficient method for the esterification or thioesterification of equimolar amounts of carboxylic acids and alcohols or thiols using a novel reagent, p-toluenesulfonyl chloride (TsCl) together with N-methylimidazole. The present method is simple, mild, and reactive, uses readily available and economical reagents. The choice of amine is critical for the present method. The amine, N-methylimidazole, has two roles: (i) as an HCl scavenger for the initial smooth generation of mixed anhydrides between carboxylic acids and TsCl and (ii) successive formation of highly reactive ammonium intermediates from mixed anhydrides. This method could be applied to various types of carboxylic acids, alcohols, and thiols: a) several functionalities were tolerated; b) two N-Cbz amino acids were smoothly esterified without racemization; and c) the labile 1b-methylcarbapenem key intermediate and a pyrethroid insecticide, prallethrin, were successfully prepared. The related amide formation between carboxylic acids and primary or secondary amines was also performed. The proposed reaction mechanism involves a novel method for producing the reactive acylammonium intermediates. The production of these intermediates was rationally supported by a careful 1 H NMR monitoring study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.