A pair of myoglobins containing inherently distorted alpha-ethyl-2,4-dimethyldeuteroheme or undistorted 2,4-dimethyldeuteroheme were prepared, and the functional consequence of intrinsic heme deformation was investigated. The visible absorption peaks of the myoglobin bearing the distorted heme exhibited a bathochromic shift, indicating that the heme was deformed in the protein pocket. Ligand affinities for the ferric myoglobin with the distorted heme were found to be higher than those of the myoglobin bearing the undistorted heme. The observation suggested that the iron atom was more displaced toward the proximal histidine to weaken the coordination of the water molecule. In the paramagnetic proton NMR spectrum of ferrous deoxy protein, the deformed heme caused a 3.2 ppm lower-field shift of the proximal histidine signal, supporting an enhanced iron-histidine interaction. The deformed heme in ferrous myoglobin lowered the oxygen and carbon monoxide affinities by 25- and 480-fold, respectively, and caused the cleavage of the iron-histidine bond in a fractional population of the nitric oxide derivative. These results demonstrate a distinctive controlling mechanism for ligand binding by the deformed heme. Upon the heme distortion, the iron atom is more attracted by the proximal histidine to reduce the affinity of exogenous ligands for the ferrous heme.
A number of mono(imidazole)-ligated complexes of perchloro(meso-tetramesitylporphyrinato)iron(III), [Fe(TMP)L]ClO(4), have been prepared, and their spin states have been examined by (1)H NMR, (13)C NMR, and EPR spectroscopy as well as solution magnetic moments. All the complexes examined have shown a quantum mechanical spin admixed state of high and intermediate-spin (S = 5/2 and 3/2) states though the contribution of the S = 3/2 state varies depending on the nature of axial ligands. While the complex with extremely bulky 2-tert-butylimidazole (2-(t)()BuIm) has exhibited an essentially pure S = 5/2 state, the complex with electron-deficient 4,5-dichloroimidazole (4,5-Cl(2)Im) adopts an S = 3/2 state with 30% of the S = 5/2 spin admixture. On the basis of the (1)H and (13)C NMR results, we have concluded that the S = 3/2 contribution at ambient temperature increases according to the following order: 2-(t)BuIm < 2-(1-EtPr)Im < 2-MeIm
The electron configuration of a series of low-spin (dicyano){meso-tetrakis(2,4,6-trialkylphenyl)porphyrinato}iron(III) complexes, [Fe(R-TPP)(CN)2]- where R = Me, Et, or iPr, together with the parent [Fe(TPP)(CN)2]-, has been examined in dichloromethane−methanol solution by 1H NMR, 13C NMR, and EPR spectroscopies. While the ferric ion of [Fe(TPP)(CN)2]- has shown a common (d xy )2(d xz ,d yz )3 configuration, the ferric ions of the alkyl-substituted complexes [Fe(R-TPP)(CN)2]- have exhibited the preference of a less common (d xz ,d yz )4(d xy )1 configuration. Spectroscopic characteristics of the complexes in which ferric ions take the (d xz ,d yz )4(d xy )1 configuration are (i) axial type EPR spectra, (ii) downfield shifted pyrrole and meta signals in 1H NMR spectra, and (iii) downfield shifted meso-carbon signals in 13C NMR spectra. Occurrence of the less common (d xz ,d yz )4(d xy )1 configuration in [Fe(R-TPP)(CN)2]- has been ascribed to the electronic interaction between iron(dπ) and cyanide(pπ*) orbitals. The interaction stabilizes the dπ orbitals and induces (d xz ,d yz )4(d xy )1 configuration. Since the electron configuration of (dicyano){meso-tetrakis(2,6-dichlorophenyl)porphyrinato}iron(III), [Fe(Cl-TPP)(CN)2]-, which carries bulky electronegative chlorine atoms at the ortho positions, is presented as a common (d xy )2(d xz ,d yz )3, the less common (d xz ,d yz )4(d xy )1 configuration in [Fe(R-TPP)(CN)2]- can be ascribed, at least partially, to the electron-donating ability of the meso-aryl groups.
There are two types of electron configurations, (d(xy))(2)(d(xz), d(yz))(3) and (d(xz), d(yz))(4)(d(xy))(1), in low-spin iron(III) porphyrin complexes. To reveal the solvent effects on the ground-state electron configurations, we have examined the (13)C- and (1)H-NMR spectra of low-spin dicyano[meso-tetrakis(2,4,6-triethylphenyl)porphyrinato]ferrate(III) in a variety of solvents, including protic, dipolar aprotic, and nonpolar solvents. On the basis of the NMR study, we have reached the following conclusions: (i) the complex adopts the ground state with the (d(xz), d(yz))(4)(d(xy))(1) electron configuration, the (d(xz), d(yz))(4)(d(xy)())(1) ground state, in methanol, because the d(pi) orbitals are stabilized due to the O-H...N hydrogen bonding between the coordinated cyanide and methanol; (ii) the complex also exhibits the (d(xz), d(yz))(4)(d(xy))(1) ground state in nonpolar solvents, such as chloroform and dichloromethane, which is ascribed to the stabilization of the d(pi) orbitals due to the C-H...N weak hydrogen bonding between the coordinated cyanide and the solvent molecules; (iii) the complex favors the (d(xz), d(yz))(4)(d(xy))(1) ground state in dipolar aprotic solvents, such as DMF, DMSO, and acetone, though the (d(xz), d(yz))(4)(d(xy))(1) character is less than that in chloroform and dichloromethane; (iv) the complex adopts the (d(xy))(2)(d(xz), d(yz))(3) ground state in nonpolar solvents, such as toluene, benzene, and tetrachloromethane, because of the lack of hydrogen bonding in these solvents; (v) acetonitrile behaves like nonpolar solvents, such as toluene, benzene, and tetrachloromethane, though it is classified as a dipolar aprotic solvent. Although the NMR results have been interpreted in terms of the solvent effects on the ordering of the d(xy) and d(pi) orbitals, they could also be interpreted in terms of the solvent effects on the population ratios of two isomers with different electron configurations. In fact, we have observed the unprecedented EPR spectra at 4.2 K which contain both the axial- and large g(max)-type signals in some solvents such as benzene, toluene, and acetonitrile. The observation of the two types of signals has been ascribed to the slow interconversion on the EPR time scale at 4.2 K between the ruffled complex with the (d(xz), d(yz))(4)(d(xy))(1) ground state and, possibly, the planar (or nearly planar) complex with the (d(xy))(2)(d(xz), d(yz))(3) ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.