The recognition of invading microbes followed by the induction of effective innate immune response is crucial for host survival. Human surface epithelial cells are situated at host-environment boundaries and thus act as the first line of host defense against invading microbes. They recognize the microbial ligands via Toll-like receptors (TLRs) expressed on the surface of epithelial cells. TLR2 has gained importance as a major receptor for a variety of microbial ligands. In contrast to its high expression in lymphoid tissues, TLR2 is expressed at low level in epithelial cells. Thus, it remains unclear whether the low amount of TLR2 expressed in epithelial cells is sufficient for mediating bacteria-induced host defense and immune response and whether TLR2 expression can be upregulated by bacteria during infection. Here, we show that TLR2, although expressed at very low level in unstimulated human epithelial cells, is greatly up-regulated by nontypeable Hemophilus influenzae (NTHi), an important human bacterial pathogen causing otitis media and chronic obstructive pulmonary diseases. Activation of an IKK-IB␣-dependent NF-B pathway is required for TLR2 induction, whereas inhibition of the MKK3/6-p38␣/ pathway leads to enhancement of NTHi-induced TLR2 up-regulation. Surprisingly, glucocorticoids, well known potent anti-inflammatory agents, synergistically enhance NTHi-induced TLR2 up-regulation likely via a negative cross-talk with the p38 MAP kinase pathway. These studies may bring new insights into the role of bacteria and glucocorticoids in regulating host defense and immune response and lead to novel therapeutic strategies for modulating innate immune and inflammatory responses for otitis media and chronic obstructive pulmonary diseases.
Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. We have demonstrated recently that glucocorticoids synergistically enhance nontypeable Haemophilus influenzae (NTHi)-induced expression of Toll-like receptor 2 (TLR2), an important TLR family member that has been shown to play a critical role in host immune and defense response. However, the molecular mechanisms underlying the glucocorticoid-mediated enhancement of TLR2 induction still remain unknown. Here we show that glucocorticoids synergistically enhance NTHi-induced TLR2 expression via specific up-regulation of the MAPK phosphatase-1 (MKP-1) that, in turn, leads to dephosphorylation and inactivation of p38 MAPK, the negative regulator for TLR2 expression. Moreover, increased expression of TLR2 in epithelial cells greatly enhances the NTHi-induced expression of several key cytokines, including tumor necrosis factor-␣ and interleukins 1 and 8, thereby contributing significantly to host immune and defense response. These studies may bring new insights into the novel role of glucocorticoids in orchestrating and optimizing host immune and defense responses during bacterial infections and enhance our understanding of the signaling mechanisms underlying the glucocorticoid-mediated attenuation of MAPKs.
This study demonstrates that myocardin is involved in the activation of HSC; myocardin may serve as a novel therapeutic target in the treatment of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.