The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch 1 to a precision of a few parts in 10 15 . Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen 2-4 . The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10 −10 .
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers 1-3 and the measurement 4 of the zero-field groundstate splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron 5-8 , inspired Schwinger's relativistic theory of quantum electrodynamics 9,10 and gave rise to the hydrogen maser 11 , which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen 12 -the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms 13,14 provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter 12,15 . Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magneticfield-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.In an earlier experiment 12 using the original ALPHA apparatus 16 , we demonstrated microwave-induced spin flips in trapped antihydrogen. The current work was carried out using the second-generation ALPHA-2 device (Fig.
The ground state hyperfine splitting of positronium ∆ HFS is sensitive to high order corrections of quantum electrodynamics (QED) in bound state. The theoretical prediction and the averaged experimental value for ∆ HFS has a discrepancy of 15 ppm, which is equivalent to 3.9 standard deviations (s.d.). A new precision measurement which reduces the systematic uncertainty from the positronium thermalization effect was performed, in which the non-thermalization effect was measured to be as large as 10 ± 2 ppm in a timing window we used. When this effect is taken into account, our new result becomes ∆ HFS = 203.394 2 ± 0.001 6(stat., 8.0 ppm) ± 0.001 3(sys., 6.4 ppm) GHz, which favors the QED prediction within 1.2 s.d. and disfavors the previous experimental average by 2.6 s.d. (A. Ishida) 1 Ps thermalization is a process that Ps loses its kinetic energy from initial energy E 0 to room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.