BackgroundIncreasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development.ResultsZebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters.ConclusionsTranscript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
Mice with a targeted mutation of the gastric inhibitory polypeptide (GIP) receptor gene (GIPR) were generated to determine the role of GIP as a mediator of signals from the gut to pancreatic  cells. GIPR؊͞؊ mice have higher blood glucose levels with impaired initial insulin response after oral glucose load. Although blood glucose levels after meal ingestion are not increased by high-fat diet in GIPR؉͞؉ mice because of compensatory higher insulin secretion, they are significantly increased in GIPR؊͞؊ mice because of the lack of such enhancement. Accordingly, early insulin secretion mediated by GIP determines glucose tolerance after oral glucose load in vivo, and because GIP plays an important role in the compensatory enhancement of insulin secretion produced by a high insulin demand, a defect in this entero-insular axis may contribute to the pathogenesis of diabetes.
The presence of somatostatin receptors has been demonstrated in various endocrine tumors as well as in normal tissues. We recently have cloned five human somatostatin receptor subtypes (SSTRI-SSTR5). These mRNAs are expressed in a tissue-specific manner. In this study, we have determined the somatostatin receptor subtypes expressed in various endocrine tumors using a reverse transcriptase polymerase chain reaction method. In two cases of glucagonoma and its metastatic lymph nodes in one case, all the SSTR subtype mRNAs except SSTR5 mRNA were expressed. In four cases of insulinoma, SSTR1 and SSTR4 mRNAs were detected, but SSTR2 mRNA was not detected in one case and SSTR3 mRNA was not detected in two cases, indicating a heterogeneous expression of SSTR subtypes in insulinomas. Interestingly, SSTR3 mRNA, which is highly expressed in rat pancreatic islets, is not expressed in normal human pancreatic islets, while SSTR1, SSTR2, and SSTR4 mRNAs are expressed. In three cases of pheochromocytoma, SSTR1 and SSTR2 mRNAs were detected, showing an expression pattern identical to that of normal adrenal gland. In a carcinoid, SSTRI and SSTR4 mRNAs were detected. We have also found that human SSTR2 shows a high affinity for SMS 201-995, which has been used clinically for the treatment of endocrine tumors. Since SMS 201-995 was effective in the treatment of a patient with glucagonoma in which SSTR2 mRNA was present, but had no effect in a patient with carcinoid in which SSTR2 mRNA was not detected, this study suggests that the efficacy of SMS 201-995 may depend, at least in part, on the expression of SSTR2 in tumors. (J. Clin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.