Ethyl caproate (EC) is a key flavor component of sake. Recently, in sake brewing, an effort has been underway to increase the content of aromatic components such as EC. However, the function of EC in yeast cells remains poorly understood. Therefore, we investigated the effects of EC using cell-sized lipid vesicles. We found that vesicle size decreases in a concentration-dependent manner when EC is contained in lipid vesicles. Furthermore, yeast experiments showed that a strain producing high quantities of EC in its stationary phase decreased in size during EC production. Given caproic acid’s (CA) status as the esterification precursor of EC in yeast, we also compared lipid vesicles containing CA with those containing EC. We found that CA vesicles were smaller than EC vesicles of the same concentration. These results suggest that EC production may function apparently to maintain cell size.
Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.