HIV-1 particle production occurs in a series of steps promoted by the viral Gag protein. Although it is well established that assembly and release take place at the plasma membrane, the nature of membrane assembly sites remains poorly understood. We show here that Gag specifically associates with cholesterol-enriched microdomains (''rafts'') at the plasma membrane. Kinetic studies demonstrate that raft association follows membrane binding, and the analysis of Gag mutants reveals that, whereas the N terminus of Gag mediates raft binding, this association is greatly enhanced by Gag-Gag interaction domains. We observe that depletion of cellular cholesterol markedly and specifically reduces HIV-1 particle production. Furthermore, treatment of virus-producing cells or virus particles with raft-disrupting agents significantly impairs virus infectivity. These results identify the association of Gag with plasma membrane rafts as an important step in HIV-1 replication. These findings may lead to novel strategies for suppressing HIV-1 replication in vivo.
A critical early event in the HIV type 1 (HIV-1) particle assembly pathway is the targeting of the Gag protein to the site of virus assembly. In many cell types, assembly takes place predominantly at the plasma membrane. Cellular factors that regulate Gag targeting remain undefined. The phosphoinositide phosphatidylinositol (4,5) bisphosphate [PI(4,5)P 2] controls the plasma membrane localization of a number of cellular proteins. To explore the possibility that this lipid may be involved in Gag targeting and virus particle production, we overexpressed phosphoinositide 5-phosphatase IV, an enzyme that depletes cellular PI(4,5)P 2, or overexpressed a constitutively active form of Arf6 (Arf6͞Q67L), which induces the formation of PI(4,5)P 2 -enriched endosomal structures. Both approaches severely reduced virus production. Upon 5-phosphatase IV overexpression, Gag was no longer localized on the plasma membrane but instead was retargeted to late endosomes. Strikingly, in cells expressing Arf6͞Q67L, Gag was redirected to the PI(4,5)P 2-enriched vesicles and HIV-1 virions budded into these vesicles. These results demonstrate that PI(4,5)P 2 plays a key role in Gag targeting to the plasma membrane and thus serves as a cellular determinant of HIV-1 particle production.
Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P 2 ] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P 2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P 2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P 2 -depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P 2 . To examine a putative Gag interaction with PI(4,5)P 2 , we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P 2 . Using this assay, we observed that PI(4,5)P 2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P 2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P 2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P 2 -containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P 2 on the membrane and that the MA basic domain mediates this interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.