MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen-and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer. MicroRNAs (miRNAs)2 are small non-coding RNAs composed of about 22-24 nucleotides and control protein expression through translational inhibition or mRNA degradation by binding to the 3Ј-untranslated region (3Ј-UTR) of target mRNAs (1). miRNAs regulate a number of biological processes such as development, proliferation, differentiation, and apoptosis. Aberrant expression of miRNA has been reported in a variety of cancers, some of which have been shown to act as tumor suppressors or oncogenes (2).MiR-148a expression is down-regulated in human breast cancer and undifferentiated gastric cancer (3, 4). DNA methylation-associated silencing of miR-148 expression is identified in human cancer cell lines established from lymph node metastasis of colon, melanoma, and head and neck cancer, suggesting its role for the development of metastasis (5). Direct targets of miR-148a so far reported include transcription growth factor--induced factor 2 (TGIF2), DNA (cytosine-5-)-methyltransferase 3 (DNMT3b) and pregnane X receptor (PXR) (5-7). However, the functional roles and target genes of miR-148a in prostate cancer have not yet been documented.Mitogen-and stress-activated kinase 1 (MSK1), also known as ribosomal protein S6 kinase, 90kDa, polypeptide 5 (RPS6KA5), is a serine/threonine...
The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus ($\mu$–$e$ conversion, $\mu^{-}N \rightarrow e^{-}N$); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is $3.1\times10^{-15}$, or 90% upper limit of a branching ratio of $7\times 10^{-15}$, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the $\mu$–$e$ conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
BackgroundOne of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ) has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ) has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action.Principal FindingsWe found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5). pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS). pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA), which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity.Conclusions/SignificanceThese results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse species and may lead to the development of nutraceutical interventions in the aging process.
The ordered and controlled location of molecular compounds on electrode surfaces is essential for the nanometer-scale design of electrochemical interfaces in view of fundamental electron-transfer studies and several lines of applications, such as molecular electronic devices, optical devices, and sensors.[1] Furthermore, layer-by-layer deposition of molecular units onto preorganized self-assembled monolayers (SAMs) has proven to be useful in preparing layered architectures with enhanced properties.[2] Although a significant progress has been made for atomic-scale depositions (such as underpotential deposition and atomic layer epitaxy) [3] or molecular 2D assembly, [4] an "electrochemicalcontrol strategy" to prepare layer-by-layer 3D structures from molecular building blocks is currently unavailable. Herein we report on the successful construction of layer-by-layer nanostructures on a gold electrode by using a redox-active metalcluster molecule, [5] in which the electrode potential modulation precisely controls the multilayer growth. We show that the series of multilayers display extensive electronic coupling between the linked molecular units, thus allowing facile multielectron transport to occur at interfaces.
The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.