Abstract. The ergometer can be a versatile means of measurement if attachments are developed for special purposes or if attachment is developed for multi-uses. In this study, an ergometer attachment for the measurement of power was designed and the measurement of power and the maximum anaerobic power in swimming was tested. A rotation drum was attached to one pedal of an ergometer. The rotation of this drum was synchronized with the rotation of the pedal. One end of a wire for a traction by a swimmer was connected to the drum. The other end of the wire was attached to a belt around the waist of a swimmer. The swimmer swam at full strength, thus causing the drum to rotate. The rotational velocity of the drum was detected as voltage by a magnetic permanent motor and transformed to wire tractional velocity; this velocity was equal to swimming velocity. The wire tension (=load) was controlled by a load adjusting lever of the ergometer. This wire tension was equal to the load which was added to the swimmer. The power calculation was based on a curved regression equation approximated from the load and the velocity. This equation was shown as follows; (P + a) (v + b) = (P0 + a)b or its development (P + a)v = b(P0 P) and provided that P: force or load, v: swimming velocity, P0: maximum tractional force, a and b: constants. This ergometer attachment made it possible to measure and evaluate the power and the maximum anaerobic power in swimming with ease and at low cost. Measurement and evaluation are easily performed using the system, which is just one example of the possible applications of the ergometer.
Wheelchair sports have a tendency to depend on the performance of wheelchairs, and the weight reduction of wheelchairs made of various alloys has helped improve the performance of players. Some players have mentioned, however, that the operability and riding comfort of competition wheelchair have been affected by changing the wheelchair materials; stiffness and weight are considered to be related to operability and riding comfort. In this experiment, we installed some weights on the center of the mass of a competitive wheelchair made of magnesium alloy to be the same mass of a wheelchair made of aluminum alloy; vibrations that occurred on both wheelchairs while driving were measured and compared. The experiment was performed using 3-axis sensors. This experiment showed that the vibration frequency of the wheelchair made of magnesium alloy was different from that made of aluminum alloy. This result was thought to be influenced by the difference in Young’s modulus or the specific weight.
We have been constructing a swimming ability improvement support system. One of the issues to be addressed is the automatic classification of swimming styles (backstroke, breaststroke, butterfly, and front crawl). The mainstream swimming style classification technique of conventional researches is based on non-ensemble learning; in their classification, breaststroke and butterfly are mixed up with each other. To improve its generalization performance, we need to use better classifiers and more adaptive feature values than previously considered. Therefore, this research has introduced (1) random forest technique, one of ensemble learning techniques, and (2) feature values specific to breaststroke and butterfly to construct a four-swimming-style classifier that has resolved this issue. From subjects with 7 to 20 years history of swimming races, we have obtained their sensor data during swimming and have divided the data into learning data and test data. We have also converted them into feature values that represent their body motions. We have selected from those body-motion-representing feature values the important data to classify four swimming styles and feature values specific to breaststroke and butterfly. We have used the learning data to construct a swimming style classifier, and the test data to evaluate its classification accuracy. The evaluation results show that (1’) the introduction of ensemble learning has improved the mean value of F-measure for breaststroke and butterfly by 0.053, and (2’) the introduction of feature values specific to breaststroke and butterfly has improved the mean value of F-measure for breaststroke and butterfly by 0.121 as compared with (1’). The proposed swimming style classifier has performed a mean F-measure of 0.981 for the four swimming styles as well as good classification accuracies for front crawl and backstroke. Therefore, we have concluded that the swimming style classifier we have constructed has resolved the problem of mixing up breaststroke and butterfly, as well as can properly classify all different swimming styles.
The purpose of my work was to limit the spread of the wheelchair accident by using the information and communication technology (ICT). This paper presents the changing situation of the seating pressure distribution on wheelchair users by variations in the gradient of the road surface. The measurement experimentation of seating pressure distribution was recording the traveling state of a wheelchair using both an acceleration sensor and an angular velocity sensor. To estimate the effect of changing the attitude of an occupant by a change in slope surface state and to cope with the improving safety. As a result, the traveling on the slope was found to have effects on the more than about average 7 times in the variation in pressure distribution from front-back direction in comparison to traveling on the flat road. In conclusion, the results of the study can be used to support maintenance of posture by wheelchair users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.