IL-23 and Th17 cells not only induce Th17-cell-mediated neutrophilic airway inflammation but also up-regulate Th2-cell-mediated eosinophilic airway inflammation.
It has recently been shown that interleukin (IL)-21 is produced by Th17 cells, functions as an autocrine growth factor for Th17 cells, and plays critical roles in autoimmune diseases. In this study, we investigated the differentiation and characteristics of IL-21–producing CD4+ T cells by intracellular staining. Unexpectedly, we found that under Th17-polarizing conditions, the majority of IL-21–producing CD4+ T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21–producing CD4+ T cells without the induction of IL-4, IFN-γ, IL-17A, or IL-17F production. On the other hand, TGF-β inhibited IL-6– and IL-21–induced development of IL-21–producing CD4+ T cells. IL-2 enhanced the development of IL-21–producing CD4+ T cells under Th17-polarizing conditions. Finally, IL-21–producing CD4+ T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6, but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21–producing CD4+ T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6–rich environment devoid of TGF-β, and that IL-21 functions as an autocrine growth factor for IL-21–producing CD4+ T cells.
Interleukin 21 (IL-21) has recently been identified as a multifunctional cytokine that induces the proliferation of T cells and B cells and differentiation of natural killer cells. To determine whether IL-21 regulates IL-4–mediated immune responses, we examined the effect of IL-21 on antigen-specific IgE production in mice. We also examined the effect of IL-21 on IL-4–induced IgE production from B cells and antigen-induced T-helper 2 (Th2) cell differentiation. The in vivo injection of IL-21 prevented antigen-specific IgE but not IgG2a production on immunization. IL-21 did not affect Th2 cell differentiation or IL-4 production from CD4+ T cells but directly inhibited IL-4–induced IgE production from B cells at single-cell levels. Moreover, IL-21 inhibited IL-4–induced germ line Cε transcription in B cells without the inhibition of signal transducer and activator of transcription 6 (Stat6) activation. Taken together, these results indicate that IL-21 down-regulates IgE production from IL-4–stimulated B cells through the inhibition of germ line Cε transcription and thus suggest that IL-21 may be useful for the treatment of IgE-dependent allergic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.