Background and study aims: Linked color imaging (LCI) is a new image-enhanced endoscopy technique using a laser light source to enhance slight differences in mucosal color. The aim of this study was to compare the usefulness of LCI and conventional white light imaging (WLI) endoscopy for diagnosing Helicobacter pylori (H. pylori). Patients and methods: We retrospectively analyzed images from 60 patients examined with WLI and LCI endoscopy between October 2013 and May 2014. Thirty patients had H. pylori infections, and other thirty patients tested negative for H. pylori after eradication therapy. Four endoscopists evaluated the 2 types of images to determine which was better at facilitating a diagnosis of H. pylori infection. Results: H. pylori infection was identified with LCI by enhancing the red appearance of the fundic gland mucosa. The accuracy, sensitivity, and specificity for diagnosing H. pylori infection using WLI were 74.2 %, 81.7 %, and 66.7 %, respectively, while those for LCI were 85.8 %, 93.3 %, and 78.3 %, respectively. Thus, the accuracy and sensitivity for LCI were significantly higher than those for WLI (P = 0.002 and P = 0.011, respectively). The kappa values for the inter- and intraobserver variability among the 4 endoscopists were higher for LCI than for WLI. Conclusions: H. pylori infection can be identified by enhancing endoscopic images of the diffuse redness of the fundic gland using LCI. LCI is a novel image-enhanced endoscopy and is more useful for diagnosing H. pylori infection than is WLI.
Background Blue laser imaging (BLI) is a new image-enhanced endoscopy technique that utilizes a laser light source developed for narrow-band light observation. The aim of this study was to evaluate the usefulness of BLI for the diagnosis of early gastric cancer. Methods This single center prospective study analyzed 530 patients. The patients were examined with both conventional endoscopy with white-light imaging (C-WLI) and magnifying endoscopy with BLI (M-BLI) at Kyoto Prefectural University of Medicine between November 2012 and March 2015. The diagnostic criteria for gastric cancer using M-BLI included an irregular microvascular pattern and/or irregular microsurface pattern, with a demarcation line according to the vessel plus surface classification system. Biopsies of the lesions were taken after C-WLI and M-BLI observation. The primary end point of this study was to compare the diagnostic performance between C-WLI and M-BLI. Results We analyzed 127 detected lesions (32 cancers and 95 non-cancers). The accuracy, sensitivity, and specificity of M-BLI diagnoses were 92.1, 93.8, and 91.6 %, respectively. On the other hand, the accuracy, sensitivity, and specificity of C-WLI diagnoses were 71.7, 46.9, and 80.0 %, respectively.Conclusions M-BLI had improved diagnostic performance for early gastric cancer compared with C-WLI. These results suggested that the diagnostic effectiveness of M-BLI is similar to that of magnifying endoscopy with narrow-band imaging (M-NBI).
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3'-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin- and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.
Background/Aims. The aim of this study was to evaluate the endoscopic recognition of esophageal squamous cell carcinoma (ESCC) using four different methods (Olympus white light imaging (O-WLI), Fujifilm white light imaging (F-WLI), narrow band imaging (NBI), and blue laser imaging- (BLI-) bright). Methods. We retrospectively analyzed 25 superficial ESCCs that had been examined using the four different methods. Subjective evaluation was provided by three endoscopists as a ranking score (RS) of each image based on the ease of detection of the cancerous area. For the objective evaluation we calculated the color difference scores (CDS) between the cancerous and noncancerous areas with each of the four methods. Results. There was no difference between the mean RS of O-WLI and F-WLI. The mean RS of NBI was significantly higher than that of O-WLI and that of BLI-bright was significantly higher than that of F-WLI. Moreover, the mean RS of BLI-bright was significantly higher than that of NBI. Furthermore, in the objective evaluation, the mean CDS of BLI-bright was significantly higher than that of O-WLI, F-WLI, and NBI. Conclusion. The recognition of superficial ESCC using BLI-bright was more efficacious than the other methods tested both subjectively and objectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.