The tumor suppressor p53 has been implicated in the pathogenesis of non-cancer-related conditions such as insulin resistance, cardiac failure, and early aging. In addition, accumulation of p53 has been observed in the hepatocytes of individuals with fibrotic liver diseases, but the significance of this is not known. Herein, we have mechanistically linked p53 activation in hepatocytes to liver fibrosis. Hepatocyte-specific deletion in mice of the gene encoding Mdm2, a protein that promotes p53 degradation, led to hepatocyte synthesis of connective tissue growth factor (CTGF; the hepatic fibrogenic master switch), increased hepatocyte apoptosis, and spontaneous liver fibrosis; concurrent removal of p53 completely abolished this phenotype. Compared with wild-type controls, mice with hepatocyte-specific p53 deletion exhibited similar levels of hepatocyte apoptosis but decreased liver fibrosis and hepatic CTGF expression in two models of liver fibrosis. The clinical significance of these data was highlighted by two observations. First, p53 upregulated CTGF in a human hepatocellular carcinoma cell line by repressing miR-17-92. Second, human liver samples showed a correlation between CTGF and p53-regulated gene expression, which were both increased in fibrotic livers. This study reveals that p53 induces CTGF expression and promotes liver fibrosis, suggesting that the p53/CTGF pathway may be a therapeutic target in the treatment of liver fibrosis.
Background:We reported recently the clinical efficiency of interferon (IFN)-α/5-fluorouracil (5-FU) combination therapy in advanced hepatocellular carcinoma (HCC). However, prediction of the response to the combination therapy remains unsatisfactory. The aim of this study was to investigate the anti-tumour effects of microRNA (miR)-21 on the sensitivity of HCC cells to IFN-α/5-FU and whether miR-21 can be used as a predictor of the response to such therapy in HCC.Methods:Changes in the sensitivity of HCC cells (PLC/PRF/5 and HepG2) to IFN-α/5-FU were examined after transfection with pre-miR-21 or anti-miR-21. The correlation between miR-21 expression level, evaluated by qRT–PCR, and response to the therapy was also investigated in clinical HCC specimens.Results:Hepatocellular carcinoma cells transfected with pre-miR-21 were significantly resistant to IFN-α/5-FU. Annexin V assay showed that the percentage of apoptotic cells was significantly lower in cells transfected with pre-miR-21 than control cells. Transfection of anti-miR-21 rendered HCC cells sensitive to IFN-α/5-FU, and such sensitivity was weakened by transfection of siRNAs of target molecules, PETN and PDCD4. miR-21 expression in clinical HCC specimens was significantly associated with the clinical response to the IFN-α/5-FU combination therapy and survival rate.Conclusions:The miR-21 in HCC cell lines and clinical HCC samples is a significant modulator of the anti-tumour effect of IFN-α and 5-FU. This suggests that miR-21 is a potentially suitable marker for the prediction of the clinical response to the IFN-α/5-FU combination therapy.
Angiogenesis is a critical step in the development and progression of hepatocellular carcinoma (HCC). Myeloid lineage cells, such as macrophages and monocytes, have been reported to regulate angiogenesis in mouse tumor models. TIE2, a receptor of angiopoietins, conveys pro-angiogenic signals and identifies a monocyte/macrophage subset with pro-angiogenic activity. Here, we analyzed the occurrence and kinetics of TIE2-expressing monocytes/macrophages (TEMs) in HCC patients. This study enrolled 168 HCV-infected patients including 89 with HCC. We examined the frequency of TEMs, as defined as CD141CD161TIE21 cells, in the peripheral blood and liver. The localization of TEMs in the liver was determined by immunofluorescence staining. Micro-vessel density in the liver was measured by counting CD341 vascular structures. We found that the frequency of circulating TEMs was significantly higher in HCC than non-HCC patients, while being higher in the liver than in the blood. In patients who underwent local radio-ablation or resection of HCC, the frequency of TEMs dynamically changed in the blood in parallel with HCC recurrence. Most TEMs were identified in the perivascular areas of tumor tissue. A significant positive correlation was observed between micro-vessel density in HCC and frequency of TEMs in the blood or tumors, suggesting that TEMs are involved in HCC angiogenesis. Receiver operating characteristic analyses revealed the superiority of TEM frequency to AFP, PIVKA-II and ANG-2 serum levels as diagnostic marker for HCC. Conclusion: TEMs increase in patients with HCC and their frequency changes with the therapeutic response or recurrence. We thus suggest that TEM frequency can be used as a diagnostic marker for HCC, potentially reflecting angiogenesis in the liver.
The relative contribution of hepatocyte growth factor (HGF)/MET and epidermal growth factor (EGF)/EGF receptor (EGFR), two key signal transduction systems in the normal and diseased liver, to fate decisions of adult hepatic progenitor cells (HPCs) has not been resolved. Here, we developed a robust culture system that permitted expansion and genetic manipulation of cells capable of multilineage differentiation in vitro and in vivo to examine the individual roles of HGF/MET and EGF/EGFR in HPC self-renewal and binary cell fate decision. By employing loss-of-function and rescue experiments in vitro, we showed that both receptors collaborate to increase the selfrenewal of HPCs through activation of the extracellular signal-regulated kinase (ERK) pathway. MET was a strong inducer of hepatocyte differentiation by activating AKT and signal transducer and activator of transcription (STAT3). Conversely, EGFR selectively induced NOTCH1 to promote cholangiocyte specification and branching morphogenesis while concomitantly suppressing hepatocyte commitment. Furthermore, unlike the deleterious effects of MET deletion, the liver-specific conditional loss of Egfr facilitated rather than suppressed progenitormediated liver regeneration by switching progenitor cell differentiation toward hepatocyte lineage. These data provide new insight into the mechanisms regulating the stemness properties of adult HPCs and reveal a previously unrecognized link between EGFR and NOTCH1 in directing cholangiocyte differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.