Signaling by RANKL is essential for terminal differentiation of monocytes/macrophages into osteoclasts. The TRAF6 and c-Fos signaling pathways both play important roles downstream of RANKL. We show here that RANKL selectively induces NFATc1 expression via these two pathways. RANKL also evokes Ca(2+) oscillations that lead to calcineurin-mediated activation of NFATc1, and therefore triggers a sustained NFATc1-dependent transcriptional program during osteoclast differentiation. We also show that NFATc1-deficient embryonic stem cells fail to differentiate into osteoclasts in response to RANKL stimulation, and that ectopic expression of NFATc1 causes precursor cells to undergo efficient differentiation without RANKL signaling. Thus, NFATc1 may represent a master switch for regulating terminal differentiation of osteoclasts, functioning downstream of RANKL.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.
Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Osteocytes embedded in bone have been postulated to orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts. We find here that purified osteocytes express a much higher amount of receptor activator of nuclear factor-κB ligand (RANKL) and have a greater capacity to support osteoclastogenesis in vitro than osteoblasts and bone marrow stromal cells. Furthermore, the severe osteopetrotic phenotype that we observe in mice lacking RANKL specifically in osteocytes indicates that osteocytes are the major source of RANKL in bone remodeling in vivo.
Macrophage type-I and type-II class-A scavenger receptors (MSR-A) are implicated in the pathological deposition of cholesterol during atherogenesis as a result of receptor-mediated uptake of modified low-density lipoproteins (mLDL). MSR-A can bind an extraordinarily wide range of ligands, including bacterial pathogens, and also mediates cation-independent macrophage adhesion in vitro. Here we show that targeted disruption of the MSR-A gene in mice results in a reduction in the size of atherosclerotic lesions in an animal deficient in apolipoprotein E. Macrophages from MSR-A-deficient mice show a marked decrease in mLDL uptake in vitro, whereas mLDL clearance from plasma occurs at a normal rate, indicating that there may be alternative mechanisms for removing mLDL from the circulation. In addition, MSR-A-knockout mice show an increased susceptibility to infection with Listeria monocytogenes or herpes simplex virus type-1, indicating that MSR-A may play a part in host defence against pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.