Much remains unknown about the molecular regulation of meiosis. Here we show that meiosis-specific transcripts are selectively removed if expressed during vegetative growth in fission yeast. These messenger RNAs contain a cis-acting region--which we call the DSR--that confers this removal via binding to a YTH-family protein Mmi1. Loss of Mmi1 function severely impairs cell growth owing to the untimely expression of meiotic transcripts. Microarray analysis reveals that at least a dozen such meiosis-specific transcripts are eliminated by the DSR-Mmi1 system. Mmi1 remains in the form of multiple nuclear foci during vegetative growth. At meiotic prophase these foci precipitate to a single focus, which coincides with the dot formed by the master meiosis-regulator Mei2. A meiotic arrest due to the loss of the Mei2 dot is released by a reduction in Mmi1 activity. We propose that Mei2 turns off the DSR-Mmi1 system by sequestering Mmi1 to the dot and thereby secures stable expression of meiosis-specific transcripts.
A number of meiosis-specific mRNAs are initially weakly transcribed, but then selectively removed during fission yeast mitotic growth. These mRNAs harbour a region termed DSR (determinant of selective removal), which is recognized by the YTH family RNA-binding protein Mmi1p. Mmi1p directs the destruction of these mRNAs in collaboration with nuclear exosomes. However, detailed molecular mechanisms underlying this process of selective mRNA elimination have remained elusive. In this study, we demonstrate the critical role of polyadenylation in this process. Two-hybrid and genetic screens revealed potential interactions between Mmi1p and proteins involved in polyadenylation. Additional investigations showed that destruction of DSR-containing mRNAs by exosomes required polyadenylation by a canonical poly(A) polymerase. The recruitment of Pab2p, a poly(A)-binding protein, to the poly(A) tail was also necessary for mRNA destruction. In cells undergoing vegetative growth, Mmi1p localized with exosomes, Pab2p, and components of the polyadenylation complex in several patchy structures in the nucleoplasm. These patches may represent the sites for degradation of meiosis-specific mRNAs with untimely expression.
The Ase1/Prc1 proteins constitute a conserved microtubule-associated protein family that is implicated in central spindle formation and cytokinesis. Here we characterize a role for fission yeast Ase1. Ase1 localizes to microtubule overlapping zones and displays dynamic alterations of localization during the cell cycle. In particular, its spindle localization during metaphase is reduced substantially, followed by robust appearance at the spindle midzone in anaphase. ase1 deletions are viable but defective in nuclear and septum positioning and completion of cytokinesis, which leads to diploidization and chromosome loss. Time-lapse imaging shows that elongating spindles collapse abruptly in the middle of anaphase B. Either absence or overproduction of Ase1 results in profound defects on microtubule bundling in an opposed manner, indicating that Ase1 is a dose-dependent microtubule-bundling factor. In contrast microtubule nucleating activities are not noticeably compromised in ase1 mutants. During meiosis astral microtubules are not bundled and oscillatory nuclear movement is impaired significantly. The Aurora kinase does not correctly localize to central spindles in the absence of Ase1. Finally Ase1 acts as a regulatory component in the cytokinesis checkpoint that operates to inhibit nuclear division when the cytokinesis apparatus is perturbed. Ase1, therefore, couples anaphase completion with cytokinesis upon cell division.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.