Objective: Subsidence following anterior cervical discectomy and fusion (ACDF) may lead to disruptions of cervical alignment and lordosis. The purpose of this study was to evaluate the effect of subsidence on segmental, regional, and global lordosis.Methods: This was a retrospective cohort study performed between 2016–2021 at a single institution. All measurements were performed using lateral cervical radiographs at the immediate postoperative period and at final follow-up greater than 6 months after surgery. Associations between subsidence and segmental lordosis, total fused lordosis, C2–7 lordosis, and cervical sagittal vertical alignment change were determined using Pearson correlation and multivariate logistic regression analyses.Results: One hundred thirty-one patients and 244 levels were included in the study. There were 41 one-level fusions, 67 two-level fusions, and 23 three-level fusions. The median follow-up time was 366 days (interquartile range, 239–566 days). Segmental subsidence was significantly negatively associated with segmental lordosis change in the Pearson (r = -0.154, p = 0.016) and multivariate analyses (beta = -3.78; 95% confidence interval, -7.15 to -0.42; p = 0.028) but no associations between segmental or total fused subsidence and any other measures of cervical alignment were observed.Conclusion: We found that subsidence is associated with segmental lordosis loss 6 months following ACDF. Surgeons should minimize subsidence to prevent long-term clinical symptoms associated with poor cervical alignment.
ObjectivesCOVID-19 presents a risk for delays to stroke treatment. We examined how COVID-19 affected stroke response times.MethodsA literature search was conducted to identify articles covering stroke during COVID-19 that included time metrics data pre- and post-pandemic. For each outcome, pooled relative change from baseline and 95% CI were calculated using random-effects models. Heterogeneity was explored through subgroup analyses comparing comprehensive stroke centers (CSCs) to non-CSCs.Results38 included studies reported on 6109 patients during COVID-19 and 14 637 patients during the pre-COVID period. Pooled increases of 20.9% (95% CI 5.8% to 36.1%) in last-known-well (LKW) to arrival times, 1.2% (−2.9% to 5.3%) in door-to-imaging (DTI), 0.8% (–2.9% to 4.5%) in door-to-needle (DTN), 2.8% (−5.0% to 10.6%) in door-to-groin (DTG), and 19.7% (11.1% to 28.2%) in door-to-reperfusion (DTR) times were observed during COVID-19. At CSCs, LKW increased by 24.0% (−0.3% to 48.2%), DTI increased by 1.6% (−3.0% to 6.1%), DTN increased by 3.6% (1.2% to 6.0%), DTG increased by 4.6% (−5.9% to 15.1%), and DTR increased by 21.2% (12.3% to 30.1%). At non-CSCs, LKW increased by 12.4% (−1.0% to 25.7%), DTI increased by 0.2% (−2.0% to 2.4%), DTN decreased by −4.6% (−11.9% to 2.7%), DTG decreased by −0.6% (−8.3% to 7.1%), and DTR increased by 0.5% (−31.0% to 32.0%). The increases during COVID-19 in LKW (p=0.01) and DTR (p=0.00) were statistically significant, as was the difference in DTN delays between CSCs and non-CSCs (p=0.04).ConclusionsFactors during COVID-19 resulted in significantly delayed LKW and DTR, and mild delays in DTI, DTN, and DTG. CSCs experience more pronounced delays than non-CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.