In 1974, the metal-to-ligand charge transfer (MLCT) excited state, [Ru(bpy)3]2+*, was shown to undergo electron transfer quenching by methylviologen dication (MV2+), inspiring a new approach to artificial photosynthesis based on molecules, molecular-level phenomena, and a “modular approach”. In the intervening years, application of synthesis, excited-state measurements, and theory to [Ru(bpy)3]2+* and its relatives has had an outsized impact on photochemistry and photophysics. They have provided a basis for exploring the energy gap law for nonradiative decay and the role of molecular vibrations and solvent and medium effects on excited-state properties. Much has been learned about light absorption, excited-state electronic and molecular structure, and excited-state dynamics on timescales from femtoseconds to milliseconds. Excited-state properties and reactivity have been exploited in the investigation of electron and energy transfer in solution, in molecular assemblies, and in derivatized polymers and oligoprolines. An integrated, hybrid approach to solar fuels, based on dye-sensitized photoelectrosynthesis cells (DSPECs), has emerged and is being actively investigated.
The performance of dye-sensitized solar and photoelectrochemical cells is strongly dependent on the light absorption and electron transfer events at the semiconductor−small molecule interface. These processes as well as photo/electrochemical stability are dictated not only by the properties of the chromophore and metal oxide but also by the structure of the dye molecule, the number of surface binding groups, and their mode of binding to the surface. In this article, we report the photophysical and electrochemical properties of a series of six phosphonate-derivatized [Ru(bpy) 3 ] 2+ complexes in aqueous solution and bound to ZrO 2 and TiO 2 surfaces. A decrease in injection yield and cross surface electron-transfer rate with increased number of diphosphonated ligands was observed. Additional phosphonate groups for surface binding did impart increased electrochemical and photostability. All complexes exhibit similar back-electron-transfer kinetics, suggesting an electron-transfer process rate-limited by electron transport through the interior of TiO 2 to the interface. With all results considered, the ruthenium polypyridyl derivatives with one or two 4,4′-(PO 3 H 2 ) 2 bpy ligands provide the best balance of electron injection efficiency and stability for application in solar energy conversion devices.
Time-dependent perturbation theory and application of the Golden Rule have been shown to be quantitatively applicable to electron transfer in the inverted region, energy transfer, and excited-state decay based on spectroscopic measurements on dπ(6) polypyridyl complexes of Ru(II), Os(II), and Re(I).
The reactions between the tetra-n-butylammonium salt of [{Mo6I8}I6](2-) and silver carboxylates RCOOAg (R = CH3 (1), C(CH3)3 (2), α-C4H3O (3), C6H5 (4), α-C10H7 (5), or C2F5 (6)) in CH2Cl2 afforded new carboxylate complexes [{Mo6I8}(RCOO)6](2-). The complexes were characterized by X-ray single-crystal diffraction and elemental analysis, cyclic/differential pulse voltammetry, and IR, NMR, and UV-visible spectroscopies. The emission properties of the complexes 1-6, and those of the earlier reported complexes with R = CF3 (7) and n-C3F7 (8), were studied both in acetonitrile solution and in the solid state. In deaerated CH3CN at 298 K, all of the complexes 1-8 exhibit intense and long-lived emission with the quantum yield and lifetime being 0.48-0.73 and 283-359 μs, respectively. The oxidation (Eox)/reduction (Ered) potentials of the complexes correlate linearly with the pKa value of the terminal carboxylate ligands L = RCOO (pKa(L)). Reflecting the pKa(L) dependences of Eox/Ered, the emission energy (νem) of the complexes was also shown to correlate with pKa(L). The present study successfully demonstrates synthetic tuning of the redox, spectroscopic, and photophysical characteristics of a {Mo6I8}(4+)-based cluster complex with pKa(L).
Synthesis and photophysical properties of the highly emissive complex [Ir(Fppy)2(dmb)](+) are reported along with those of additional heteroleptic cyclometalated Ir(III) complexes, [Ir(ppy)2(NN)](PF6): FppyH = 2-(2,4-difluorophenyl)pyridine; ppyH = 2-phenylpyridine; NN = 4,4'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen), or 4,7-diphenyl-1,10-phenanthroline (Ph2phen). TD-DFT calculations and Franck-Condon emission spectral band shape analyses show that the broad and structureless emission from [Ir(Fppy)2(dmb)](+) in acetonitrile at 298 K mainly arises from a triplet metal-to-ligand charge-transfer excited state, (3)MLCTIr(ppy)→NN. The emission maximum varies systematically with variations in electron-donating or -withdrawing substituents on both the NN and the Xppy ligands, and emission efficiencies are high, with an impressive ϕ ≈ 1 for [Ir(Fppy)2(dmb)](+). At 77 K in propionitrile/butyronitrile (4/5, v/v), emission from [Ir(Fppy)2(dmb)](+) is narrow and highly structured consistent with a triplet ligand-centered transition ((3)LCNN) and an inversion in excited-state ordering between the (3)MLCTIr(ppy)→NN and (3)LCNN states. In a semirigid film of the poly(ethyleneglycol)dimethacrylate with nine ethylene glycol spacers, PEG-DMA550, emission from [Ir(Fppy)2(dmb)](+) is MLCT-based. The thermal sensitivity of the photophysical properties of this excited state points to a possible application as a temperature sensor in addition to its more known use in light-emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.