Heat treatment of a wild-type Escherichia coli strain at 55 degrees C in 50 mM Tris-hydrochloride buffer with or without 10 mM magnesium sulfate or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer at pH 8.0 caused an increase in cell surface hydrophobicity. By determining the location of n-hexadecane droplets attached to cells by phase-contrast microscopy, the septal and polar regions of heated cells appeared to become the most frequently hydrophobic. Some of the lipopolysaccharide molecules in the outer membrane were released from heated cells, and the cells became susceptible to the hydrolytic action of added phospholipase C. Heat-treated cells also became permeable to the hydrophobic dye crystal violet, which was added externally. The release of part of the outer membrane by heat treatment appeared to bring about the disorganization of the outer membrane structure and, as a consequence, to result in the partial disruption of the permeability barrier function of the outer membrane. Tris was found to enhance damage to the outer membrane by heat.
Rat superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) were co-cultured separately in a minichamber placed on a microelectrode-array (MEA) substrate. The minichamber, fabricated photolithographically using polydimethylsiloxane (PDMS), had 2 compartments, 16 microcompartments and 8 microconduits. The SCG neurons were seeded into one of the compartments and all of the microcompartments using a glass pipette controlled by a micromanipulator and a microinjector. The VMs were seeded into the other compartment. Three days after seeding of the VMs, the SCG neurons were still confined to one compartment and all of the microcompartments, and the neurites of the SCG neurons had connected with the VMs via the microconduits. Constant-voltage stimulation, using a train of biphasic square pulses (1 ms at +1 V, followed by -1 ms at 1 V), was applied to the SCG neurons in the microcompartments using 16 electrodes. Evoked responses were observed in several electrodes while electrical stimulation was applied to the SCG neurons. Two-way analysis of variance (ANOVA) revealed that the frequency of the stimulation pulses had significant effects in increasing the beat rate of the VMs, and that the interaction between the frequency and the number of the pulses also had a significant effect on the ratio. No significant increases in the beat rate were observed when propranolol, a β-adrenergic receptor antagonist, was added to the culture medium. These results suggest that synaptic pathways were formed between the SCG neurons and the VMs, and that this co-culture device can be utilized for studies of network-level interactions between sympathetic neurons and cardiomyocytes.
It is still unclear how the activity of sympathetic and parasympathetic neurons influences the activity of cardiomyocytes in culture. We developed a device for co-culturing sympathetic neurons, parasympathetic neurons, and cardiomyocytes using micro-fabrication techniques. Morphological connections between each type of autonomic neuron and the cardiomyocytes were observed by immunostaining. The inter-beat-interval (IBI) of the cardiomyocytes was modulated after electrically stimulating each type of autonomic neuron. Modulation of the IBI was blocked by the addition of pharmacological blockers to the culture medium. These results suggest that the co-culture device can be utilized to understand how the activity of sympathetic neurons and parasympathetic neurons influences the activity of cardiomyocytes in the culture environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.