Physical vapor evaporation of metals on low vapor pressure liquids is a simple and clean method to synthesize nanoparticles and thin films, though only little work has been conducted so far. Here, gold nanoparticles were synthesized by vacuum evaporation (VE) methods in ricinoleic acid and oleic acid, two typical unsaturated fatty acids (UFAs). The two solvents formed black aggregates after deposition and then shrunk and finally disappeared with the progress of time. By transmission electron microscopy (TEM) images, nanoparticles in ricinoleic acids formed aggregates and then dispersed by time, while in oleic acid big aggregates were not observed in all timescales. From TEM images and small angle X-ray scattering (SAXS) measurements, the mean size of the nanoparticles was about 4 nm in both ricinoleic and oleic acids. UV-Vis spectra were also taken as a function of time and the results were consistent with the growth behavior presumed by TEM images. Air exposure had an influence on the behavior of the sample triggering the nanoparticle formation in both solvents. From control experiments, we discovered that oxygen gas triggered the phenomenon and nanoparticles function as a catalyst for the oxidation of the UFAs. It stimulates the phenomenon and in ricinoleic acid, specifically, electrons are transferred from riconleic acid to the gold nanoparticles, enhancing the surface potential of the nanoparticles and the repulsive force between their electronic double layers.
Hydration structures play crucial roles in a wide variety of chemical and biological phenomena. However, the key factors that determine a hydration structure remain an open question. Most recent studies have focused on the electrostatic interactions between the surface charges and dipoles of water molecules, which are determined by the atomic/ionic species of the outermost solid surface, as the dominating factor. The number of studies on the correlation between the hydration structure and the atomic-scale surface corrugation has been limited. In this study, we investigated the hydration structures of alkanethiol self-assembled monolayers terminated with a hydroxyl group using frequency-modulated atomic force microscopy. We observed two molecular structures, namely, the (√3 × √3)R30° structure and the c(4 × 2) superlattice structure, and found that their hydration structures are different mainly because of the slight differences in their molecular arrangements. This result suggests that a slight difference in the molecular/atomic arrangements as well as the atomic/ionic species in the outermost solid surface strongly influences the local hydration structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.