Periodontal disease is characterized by chronic inflammation in subgingival areas, where a vast array of inflammation-associated metabolites are likely produced from tissue breakdown, increased vascular permeability, and microbial metabolism and then eventually show a steady flow into saliva. Thus, prolonged periodontal inflammation is a key feature of disease activity. Although salivary metabolomics has drawn attention for its potential use in diagnosis of periodontal disease, few authors have used that to investigate periodontal inflammation detection. In this pilot study, the authors explored the use of salivary metabolites to reflect periodontal inflammation severity with a recently proposed parameter-periodontal inflamed surface area (PISA)-used to quantify the periodontal inflammatory burden of individual patients with high accuracy. Following PISA determination, whole saliva samples were collected from 19 subjects before and after removal of supragingival plaque and calculus (debridement) with an ultrasonic scaler to assess the influence of the procedure on salivary metabolic profiles. Metabolic profiling of saliva was performed with gas chromatography coupled to time-of-flight mass spectrometry, followed by multivariate regression analysis with orthogonal projections to latent structures (OPLS) to investigate the relationship between PISA and salivary metabolic profiles. Sixty-three metabolites were identified. OPLS analysis showed that postdebridement saliva provided a more refined model for prediction of PISA than did predebridement samples, which indicated that debridement may improve detection of metabolites eluted from subgingival areas in saliva, thus more accurately reflecting the pathophysiology of periodontitis. Based on the variable importance in the projection values obtained via OPLS, 8 metabolites were identified as potential indicators of periodontal inflammation, of which the combination of cadaverine, 5-oxoproline, and histidine yielded satisfactory accuracy (area under the curve = 0.881) for diagnosis of periodontitis. The authors' findings identified potential biomarkers that may be useful for reflecting the severity of periodontal inflammation as part of monitoring disease activity in periodontitis patients.
Background: Arginine and its derivatives are key factors for inter-bacterial communication in periodontal microflora.Results: ArcD-mediated export of ornithine by oral commensal Streptococcus gordonii facilitates biofilm development of Fusobacterium nucleatum.Conclusion: Ornithine cross-feeding from S. gordonii to F. nucleatum mediates dental biofilm maturation.Significance: This is the first report of metabolic cross-feeding between S. gordonii and F. nucleatum.
Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.