The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity.
The Schottky barrier height (SBH) is mapped with nanoscale resolution at pure Au/Si (001) and mixed Au/Ag/Si(001) interfaces utilizing ballistic electron emission microscopy (BEEM) by acquiring and fitting spectra every 11.7 nm over a 1 µm × 1 µm area. The energetic distribution of the SBH for the mixed interfaces contain several local maximums indicative of a mixture of metal species at the interface. To estimate the composition at the interface, the distributions are fit to multiple Gaussians that account for the species, "pinch-off" effects, and defects. This electrostatic composition is compared to Rutherford backscattering spectrometry (RBS) and x-ray photo-emission spectroscopy (XPS) measurements to relate it to the physical composition at the interface.
A technique to fabricate 5 to 20 nm thick sputter deposited β W films on SiO2 and Si substrates is presented. This is achieved by growing tungsten on a 5 nm SiO2 layer or in an oxygen controlled environment by flowing 2 sccm of O2 during deposition. Resistivity, X-ray photoelectron spectroscopy, X-ray diffraction and reflectivity studies were performed to determine the phase and thickness of tungsten films. These results demonstrate a technique to grow this film on bare Si or a SiO2 substrate, which can enable growth on the bottom of a write unit in a non-volatile spin logic device.
The temperature dependence of the spin lifetime and spin diffusion coefficient of exfoliated multilayer graphene is measured using nonlocal spin detection and spin precession measurements. Low impedance cobalt contacts are utilized for spin injection and readout. A decrease in spin lifetime with increasing temperature is observed as well as an increase in the spin diffusion coefficient with increasing temperature. This observation provides some insight into the relevant spin relaxation mechanisms that are occurring in this trilayer graphene sample.
Magnetic Ni nanoclusters were synthesized by electron beam deposition utilizing CVD graphene as a scaffold. The subsequent clusters were subjected to high vacuum (5-8 x10 -7 torr) annealing between 300 and 600 0 C. The chemical stability, optical and morphological changes were characterized by X-ray photoemission microscopy, Raman spectroscopy, atomic force microscopy and magnetic measurement. Under ambient exposure, nickel nanoparticles was observed to be oxidized quickly, forming antiferromagnetic nickel oxide. Here, we report that the majority of the oxidized nickel is in non-stoichiometric form and can be reduced under high vacuum at temperature as low as 300 0 C. Importantly, the resulting annealed clusters are relatively stable and no further oxidation was detectable after three weeks of air exposure at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.