A daily gridded precipitation dataset covering a period of more than 57 yr was created by collecting and analyzing rain gauge observation data across Asia through the activities of the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) project. APHRODITE's daily gridded precipitation is presently the only long-term, continental-scale, high-resolution daily product. The product is based on data collected at 5,000–12,000 stations, which represent 2.3–4.5 times the data made available through the Global Telecommunication System network and is used for most daily gridded precipitation products. Hence, the APHRODITE project has substantially improved the depiction of the areal distribution and variability of precipitation around the Himalayas, Southeast Asia, and mountainous regions of the Middle East. The APHRODITE project now contributes to studies such as the determination of Asian monsoon precipitation change, evaluation of water resources, verification of high-resolution model simulations and satellite precipitation estimates, and improvement of precipitation forecasts. The APHRODITE project carries out outreach activities with Asian countries, and communicates with national institutions and world data centers. We have released open-access APHRO_V1101 datasets for monsoon Asia, the Middle East, and northern Eurasia (at 0.5° × 0.5° and 0.25° × 0.25° resolution) and the APHRO_JP_V1005 dataset for Japan (at 0.05° × 0.05° resolution; see www.chikyu.ac.jp/precip/ and http://aphrodite.suiri.tsukuba.ac.jp/). We welcome cooperation and feedback from users.
A new gauge-based analysis of daily precipitation has been constructed on a 0.5°latitude-longitude grid over East Asia (5°-60°N, 65°-155°E) for a 26-yr period from 1978 to 2003 using gauge observations at over 2200 stations collected from several individual sources. First, analyzed fields of daily climatology are computed by interpolating station climatology defined as the summation of the first six harmonics of the 365-calendar-day time series of the mean daily values averaged over a 20-yr period from 1978 to 1997. These fields of daily climatology are then adjusted by the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) monthly precipitation climatology to correct the bias caused by orographic effects. Gridded fields of the ratio of daily precipitation to the daily climatology are created by interpolating the corresponding station values using the optimal interpolation method. Analyses of total daily precipitation are finally calculated by multiplying the daily climatology by the daily ratio.Cross-validation tests indicated that this gauge-based analysis has high quantitative quality with a negligible bias and a correlation coefficient of ϳ0.6 for comparisons between withdrawn station data and the analysis at a 0.05°latitude-longitude grid box. The quality of the analysis increases with the gauge network density. The mean distribution and annual cycle of this new gauge analysis present similar patterns but with more detailed structures and slightly larger magnitude compared to other published monthly gauge analyses over the region.The East Asia gauge analysis is applied to verify the performance of five satellite-based precipitation estimates. This examination reveals the regionally and seasonally dependent performance of the satellite products with the best statistics observed for relatively wet regions. Further improvements of the daily gauge analysis are underway to increase the gauge network density and to refine the algorithm to better deal with the orographic effects especially over South and Southeast Asia.
A daily gridded precipitation dataset for 1961 2004 was created by collecting rain gauge observation data across Asia through the activities of the Asian PrecipitationHighly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE) project. Our number of valid stations was between 5000 and 12,000, representing 2.3 to 4.5 times the data available through the Global Telecommunication System network, which were used for most daily grid precipitation products. APHRODITE's daily gridded precipitation (APHRO_V0902) is the only long-term (1961 onward) continental-scale daily product that contains a dense network of daily rain gauge data for Asia including the Himalayas and mountainous areas in the Middle East. The product contributes to studies such as the evaluation of Asian water resources, diagnosis of climate change, statistical downscaling, and verification of numerical model simulation and high-resolution precipitation estimates using satellites. We released APHRO_ V0902 datasets for Monsoon Asia, Russia and the Middle East (on 0.5°× 0.5°and 0.25°× 0.25°grids) at http://www. chikyu.ac.jp/precip/. Herein, we show the algorithm and input data of APHRO_V0902.
Abstract:We constructed historical (1900-) high-resolution (0.05°× 0.05°) daily precipitation data over the Japanese land area as part of the product of the "Asian Precipitation -HighlyResolved Observational Data Integration Towards Evaluation of the Water Resources" (APHRODITE) project. This product APHRO_JP is derived from rain gauge observations and is intended to accurately represent both mean and extreme values. Due to new interpolation techniques developed in APHRODITE, estimation accuracy for orographic precipitation is improved, and bias for long-term amount is reduced, even for the early 20th century in which the observation network was sparse in space. Moreover, the product can be used for statistical analysis of heavy precipitation up to about 150 mm/day, over a long term period (≥ 100 years).APHRO_JP enables diverse research, including validation of meso-scale models and analysis of the longterm extreme precipitation trend in Japan.
Abstract. To evaluate satellite rainfall estimates of Tropical Rain Measurement Mission (TRMM) level 3 output (3B42) (TRMM_3B42) over Iran (20°–45° N, 40°–65° E), we compared these data with high-resolution gridded precipitation datasets (0.25°×0.25° latitude/longitude) based on rain gauges (Iran Synoptic gauges Version 0902 (IS0902)). Spatial distribution of mean annual and mean seasonal rainfall in both IS0902 and TRMM_3B42 from 1998 to 2006 shows two main rainfall patterns along the Caspian Sea and over the Zagros Mountains. Scatter plots of annual average rainfall from IS0902 versus TRMM_3B42 for each 0.25°×0.25° grid cell over the entire country (25°–40° N, 45°–60° E), along the Caspian Sea (35°–40° N, 48°–56° E), and over the Zagros Mountains (28°–37° N, 46°–55° E) were derived. For the entire country, the Caspian Sea region, and the Zagros Mountains, TRMM_3B42 underestimates mean annual precipitation by 0.17, 0.39, and 0.15 mm day−1, respectively, and the mean annual rainfall spatial correlation coefficients are 0.77, 0.57, and 0.75, respectively. The mean annual precipitation temporal correlation coefficient for IS0902 and TRMM_3B42 is ~0.8 in the area along the Zagros Mountains, and ~0.6 in the Caspian Sea and desert regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.