Wind energy technology is one of the fastest growing alternative energy technologies. However, conventional turbines commercially available in some countries are designed to operate at relatively high speeds to be appropriately efficient, limiting the use of wind turbines in areas with low wind speeds, such as urban areas. Therefore, a technique to enhance the possibility of wind energy use within the range of low speeds is needed. The techniques of augmenting wind by the concept of Diffuser Augmented Wind Turbine (DAWT) have been used to improve the efficiency of the wind turbines by increasing the wind speed upstream of the turbine. In this paper, a comprehensive review of previous studies on improving or augmentation power of horizontal axis wind turbines (HAWT) have been reviewed in two categories, first related with relative improvement of energy by improving the aerodynamic forces that affecting on HAWT in some different modifications for blades. Second, reviews different techniques to the augment the largest possible amount of power from HAWT focusing on DAWTs to gather information, helping researchers understand the research efforts undertaken so far and identify knowledge gaps in this area. DAWTs are studied in terms of diffuser shape design, sizing of investigation and geometry features which involved diffuser length, diffuser angle, and flange height. The conclusions in this work show that the use of DAWT achieves a quantum leap in increasing the production of wind power, especially in small turbines in urban areas if it properly designed. On the other hand, shrouding the wind turbine by the diffuser reduces the noise and protects the rotor blades from possible damage.
The wind is an energy source that has the properties of a clean, free, and readily available energy source. However, the efficiency of the existing rotors used to harness wind power is still not satisfactory. Thus, in this current study, the development and aerodynamic performance investigation of ten NACA airfoils comprising of five symmetrical and five non-symmetrical airfoils have been analyzed through the computational fluids dynamic (CFD) simulation approach. The main motive of this study was to investigate the aerodynamic performance of NACA airfoils to be used on a vertical axis wind turbine (VAWT), which will assist in further understanding the physics of the interaction between airflow and the wind turbine blades. The simulation was performed using two-dimensional computational models based on an unsteady state K-omega Shear Stress Transport (SST) turbulence model. This study covers a parametric study based on the variations of tip-speed ratios and constant wind velocity. The aerodynamic performances are evaluated in terms of torque, torque coefficient, and also power coefficient. The performance of NACA0018 was found to be the best among the other airfoils with a power coefficient of 0.3. NACA0010 displayed the lowest power coefficient among the other airfoils but had a more extensive operating range compared to the other airfoils. However, for non-symmetrical NACA airfoils, NACA2421 scored the highest power coefficient, followed by NACA4412. It was also found that most of the non-symmetrical NACA airfoils can operate at a higher range of tip-speed ratios compared to the symmetrical NACA airfoils.
Wind power is an energy source that is becoming an alternative to burning fossil fuels that may harm the environment during operations due to the emission of harmful gases. In this study, simulation and performance investigations of a counter-rotating vertical axis wind turbine (VAWT) based on the Savonius S-type rotor have been analysed through a computational simulation approach. The foremost motive of this study is to widen the operating wind speed range of the counter-rotating concept in a VAWT while enhancing the conversion efficiency of a single-rotor VAWT system. The 3D simulations were performed based on the K-omega shear stress transport (SST) turbulence model. The results have shown that the counter-rotating model possesses better performance characteristics in terms of torque, power and their corresponding coefficients compared to a single-rotor design of a wind turbine. A maximum output of more than two times was obtained from the new CRWT system compared to that of a single-rotor wind turbine (SRWT). Moreover, the output of the top rotor was higher than the bottom rotor due to the increased higher rotational speed of the top rotor.
View the article online for updates and enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.