Purpose
The purpose of the proposed model is to assist the e-business to predict the churned users using machine learning. This paper aims to monitor the customer behavior and to perform decision-making accordingly.
Design/methodology/approach
The proposed model uses the 2-D convolutional neural network (CNN; a technique of deep learning). The proposed model is a layered architecture that comprises two different phases that are data load and preprocessing layer and 2-D CNN layer. In addition, the Apache Spark parallel and distributed framework is used to process the data in a parallel environment. Training data is captured from Kaggle by using Telco Customer Churn.
Findings
The proposed model is accurate and has an accuracy score of 0.963 out of 1. In addition, the training and validation loss is extremely less, which is 0.004. The confusion matric results show the true-positive values are 95% and the true-negative values are 94%. However, the false-negative is only 5% and the false-positive is only 6%, which is effective.
Originality/value
This paper highlights an inclusive description of preprocessing required for the CNN model. The data set is addressed more carefully for the successful customer churn prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.