The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ΔT of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ΔP were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ΔT and ΔP as 1σ of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ΔT and ΔP were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible.
The aim of the study was to evaluate inter-fractional dosimetric variations for high-dose rate breast brachytherapy using a strut-adjusted volume implant (SAVI). For the nine patients included, dosimetric constraints for treatment were as follows: for the planning target volume for evaluation (PTV_Eval), the volume receiving 90, 150 and 200% of the prescribed dose (V90%,150%,200%) should be >90%, ≤50 cm3 and ≤20 cm3, respectively; the dose covering 1 cm3 (D1cc) of the organs at risk should be ≤110% of the prescribed dose; and the air volume should be ≤10% of PTV_Eval. Differences in V90%,150%,200%, D1cc and air volume ($\Delta V$ and $\Delta D$) as inter-fractional dosimetric variations and SAVI displacements were measured with pretreatment and planning computed tomography (CT) images. Inter-fractional dosimetric variations were analyzed for correlations with the SAVI displacements. The patients were divided into two groups based on the distance of the SAVI from the surface skin to assess the relationship between the insertion position of the SAVI and dosimetric parameters. The median ΔV90%,150%,200% for the PTV_Eval in all patients was −0.3%, 0.2 cm3 and 0.2 cm3, respectively. The median (range) ΔD1cc for the chest wall and surface skin was −0.8% (−18.9 to 9.4%) and 0.3% (−7.6 to 5.3%), respectively. SAVI displacement did not correlate with inter-fractional dosimetric variations. In conclusion, the dose constraints were satisfied in most cases. However, there were inter-fractional dosimetric changes due to SAVI displacement.
In this study, the optimum density scaling factors of phantom materials for a commercially available three‐dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm2 with the same geometry, tissue‐phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle3), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff)pl,water) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff)pl,water. The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x‐ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4.
To assess the accuracy of the movement of a brachytherapy source using a high-speed camera for evaluating source position, dwell time, and transit dose. Methods: A high-speed camera was used to record the source position of an Ir-192 source relative to a ruler within a custom positioning jig in a remote afterloading system. The analyzed frames can be used to assess dwell positions and times. Treatment plans had multiple dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in 2.5-and 5-mm step sizes. Images were acquired at a rate of 146 frames/s. Acquired images were processed to automatically track the actual source using the correlation between a template image and each frame. The brachytherapy dose calculation formalism (AAPM TG43-U1) was applied to each frame to evaluate the transit dose contribution to the total dose. Results: The differences in measured source positions from the nominal for dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in treatment plans were approximately ≤1 mm. The corresponding differences in measured dwell times from the nominal values at 5 mm steps were −15, −9, −5, and 5 ms, respectively. The source velocities at 5 mm steps were approximately 393 mm/s. The dose differences at 5 mm from the source movement with and without the transit dose for these dwell times were 38%, 7%, 3%, and 2%, respectively. Conclusions: Recording a brachytherapy source using a high-speed camera allowed the evaluation of positional and dwell time accuracies as well as dosimetry assessments, such as the transit dose, based on the application of AAPM TG-43U1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.