This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well detached binary-star-systems using eclipse timing variations (ETVs). We investigated the dynamics of well detached binary star systems with a star separation from 0.5 to 3 AU, to determine the probability of the detection of such variations with ground based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well detached binary star systems from several catalogues and discussed the possibility of further candidates.
Context. According to the latest theoretical and isotopic evidence, Earth's water content originates mainly from today's asteroid belt region, or at least from the same precursor material. This suggests that water was transported inwards to Earth, and to similar planets in their habitable zone, via (giant) collisions of planetary embryos and planetesimals during the chaotic final phase of planet formation. Aims. In current dynamical simulations water delivery to terrestrial planets is still studied almost exclusively by assuming oversimplified perfect merging, even though water and other volatiles are particularly prone to collisional transfer and loss. To close this gap we have developed a computational framework to model collisional water transport by direct combination of long-term N-body computations with dedicated 3D smooth particle hydrodynamics (SPH) collision simulations of differentiated, self-gravitating bodies for each event.Methods. Post-collision water inventories are traced self-consistently in the further dynamical evolution, in accretionary or erosive as well as hit-and-run encounters with two large surviving bodies, where besides collisional losses, water transfer between the encountering bodies has to be considered. This hybrid approach enables us for the first time to trace the full dynamical and collisional evolution of a system of approximately 200 bodies throughout the whole late-stage accretion phase (several hundred Myr). As a first application we choose a Solar System-like architecture with already formed giant planets on either circular or eccentric orbits and a debris disk spanning the whole terrestrial planet region (0.5 -4 au).Results. Including realistic collision treatment leads to considerably different results than simple perfect merging, with lower mass planets and water inventories reduced regularly by a factor of two or more. Due to a combination of collisional losses and a considerably lengthened accretion phase, final water content, especially with giant planets on circular orbits, is strongly reduced to more Earth-like values, and closer to results with eccentric giant planets. Water delivery to potentially habitable planets is dominated by very few decisive collisions, mostly with embryo-sized or larger objects and only rarely with smaller bodies, at least if embryos have formed throughout the whole disk initially. The high frequency of hit-and-run collisions and the differences to predominantly accretionary encounters, such as generally low water (and mass) transfer efficiencies, are a crucial part of water delivery, and of system-wide evolution in general.
The area of stable motion for fictitious Trojan asteroids around Uranus' equilateral equilibrium points is investigated with respect to the inclination of the asteroid's orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L4 and L5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 billion years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 < a < 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids' orbit was varied in the range 0 < i < 60 and the semimajor axes were fixed. It turned out that only four 'windows' of stable orbits survive: these are the orbits for the initial inclinations 0 < i < 7, 9 < i < 13, 31 < i < 36 and 38 < i < 50. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.Comment: 15 pages, 12 figures, submitted to CMD
Hungaria asteroids, whose orbits occupy the region in element space between 1.78 < a < 2.03 AU, e < 0.19, 12 • < i < 31 • , are a possible source of Near-Earth Asteroids (NEAs). Named after (434) Hungaria these asteroids are relatively small, since the largest member of the group has a diameter of just about 11 km. They are mainly perturbed by Jupiter and Mars, possibly becoming Marscrossers and, later, they may even cross the orbits of Earth and Venus. In this paper we analyze the close encounters and possible impacts of escaped Hungarias with the terrestrial planets. Out of about 8000 known Hungarias we selected 200 objects which are on the edge of the group. We integrated their orbits over 100 million years in a simplified model of the planetary system (Mars to Saturn) subject only to gravitational forces. We picked out a sample of 11 objects (each with 50 clones) with large variations in semi-major axis and restarted the numerical integration in a gravitational model including the planets from Venus to Saturn.Due to close encounters, some of them achieve high inclinations and eccentricities which, in turn, lead to relatively high velocity impacts on Venus, Earth, and Mars. We statistically analyze all close encounters and impacts with the terrestrial planets and determine the encounter and impact velocities of these fictitious
The scenario and efficiency of water transport by icy asteroids and comets are still amongst the most important unresolved questions of planetary systems. A better understanding of cometary dynamics in extrasolar systems shall provide information about cometary reservoirs and give an insight into water transport especially to planets in the habitable zone. The detection of Proxima Centauri-b (PCb), which moves in the habitable zone of this system, triggered a debate whether or not this planet can be habitable. In this work, we focus on the stability of an additional planet in the system and on water transport by minor bodies. We perform numerous N-body simulations with PCb and an outer Oort-cloud like reservoir of comets. We investigate close encounters and collisions with the planet, which are important for the transport of water. Observers found hints for a second planet with a period longer than 60 days. Our dynamical studies show that two planets in this system are stable even for a more massive second planet (∼ 12 Earth masses). Furthermore, we perform simulations including exocomets, a second planet, and the influence of the binary Alpha Centauri. The studies on the dynamics of exocomets reveal that the outer limit for water transport is around 200 au. In addition we show that water transport would be possible from a close-in planetesimal cloud (1-4 au). From our simulations, based on typical M-star protoplanetary disks, we estimate the water mass delivered to the planets up to 51 Earth oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.