Three-dimensional carbon nanotube scaffolds created using micromachined Si/SiO2 templates are used as nanoparticulate filters and support membranes for gas-phase heterogeneous catalysis. The filtering efficiency of better than 99% is shown for the scaffolds in filtering submicrometer particles from air. In the hydrogenation of propene to propane reaction low activation energy of E(a) approximately 27.8 +/- 0.6 kJ x mol(-1), a considerably high turnover rate of approximately 1.1 molecules x Pd site(-1) x s(-1) and durable activity for the reaction are observed with Pd decorated membranes. It is demonstrated that appropriate engineering of macroscopic-ordered nanotube architectures can lead to multifunctional applications.
Infrared Fourier Transform Spectroscopy (DRIFTS). In the case of pure NiO, we found that the surface of the support was mainly covered by elemental Ni under reaction condition, where the Ni/NiO x system is responsible for the high activity of Pt-free catalyst. In the case of Pt/NiO, Pt improves the reduction of NiO x towards metallic Ni. In the case of the 1 % Pt/NiO catalysts, the presence of limited amount of Pt resulted in an optimal quantity of oxidized Pt fraction at 673 K showing the presence of a Pt/PtO x /Ni/NiO x mixed phase where the different interfaces may be responsible for the high activity and selectivity towards methane. In the case of pure NiO under reaction condition, small amounts of formaldehyde as well as hydrogen perturbed CO [H n CO (n=1,2)] were detected. However, in the case of 1 % Pt/NiO catalysts, besides the absence of formaldehyde a significant amount of H n CO (n=2-3) was present on the surface responsible for the high activity and methane selectivity.
Certain industrially relevant performance metrics of CO2 electrolyzers have already been approached in recent years. The energy efficiency of CO2 electrolyzers, however, is yet to be improved, and the reasons behind performance fading must be uncovered. The performance of the electrolyzer cells is strongly affected by their components, among which the gas diffusion electrode is one of the most critical elements. To understand which parameters of the gas diffusion layers (GDLs) affect the cell performance the most, we compared commercially available GDLs in the electrochemical reduction of CO2 to CO, under identical, fully controlled experimental conditions. By systematically screening the most frequently used GDLs and their counterparts differing in only one parameter, we tested the influence of the microporous layer, the polytetrafluoroethylene content, the thickness, and the orientation of the carbon fibers of the GDLs. The electrochemical results were correlated to different physical/chemical parameters of the GDLs, such as their hydrophobicity and surface cracking.
Heterogeneous catalysis is a chemical process achieved at solid-gas or solid-liquid interfaces. Many factors including the particle size, shape and metal-support interfaces can have significant influences on the catalytic properties of metal catalysts. The recent progress in the synthesis techniques and advanced characterization tools allow to understand the catalytic mechanisms at molecular level. In this Review, the size and shape dependent catalytic chemistry of metal nanoparticles and their electronic properties will be discussed. Then the unique catalytic chemistry at the metal-support interfaces will be discussed in details. Furthermore, the challenges of bimetallic nanoparticle catalytic chemistry will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.