In natural hazard warning systems fast decision making is vital to avoid catastrophes. Decision making at the edge of a wireless sensor network promises fast response times but is limited by the availability of energy, data transfer speed, processing and memory constraints. In this work we present a realization of a wireless sensor network for hazard monitoring based on an array of eventtriggered single-channel micro-seismic sensors with advanced signal processing and characterization capabilities based on a novel co-detection technique. On the one hand we leverage an ultra-low power, threshold-triggering circuit paired with on-demand digital signal acquisition capable of extracting relevant information exactly and efficiently at times when it matters most and consequentially not wasting precious resources when nothing can be observed. On the other hand we utilize machine-learning-based classification implemented on low-power, off-the-shelf microcontrollers to avoid false positive warnings and to actively identify humans in hazard zones. The sensors' response time and memory requirement is substantially improved by quantizing and pipelining the inference of a convolutional neural network. In this way, convolutional neural networks that would not run unmodified on a memory constrained device can be executed in real-time and at scale on low-power embedded devices. A field study with our system is running on the rockfall scarp of the Matterhorn Hörnligrat at 3500 m a.s.l. since 08/2018.
In this demo abstract we present a custom-built low-power geophone sensor node which features on-device mountaineer classification using a convolutional neural network. The execution of such a processing-heavy algorithm on an embedded platform is enabled by optimizing the memory requirement of the neural network through advanced quantization and pipelining techniques. As a result, real-time classification with low energy consumption can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.