Clinical decision support systems (CDSSs) implementing cancer clinical practice guidelines (CPGs) have the potential to improve the compliance of decisions made by multidisciplinary tumor boards (MTB) with CPGs. However, guideline-based CDSSs do not cover complex cases and need time for discussion. We propose to learn how to predict complex cancer cases prior to MTBs from breast cancer patient summaries (BCPSs) resuming clinical notes. BCPSs being unstructured natural language textual documents, we implemented four semantic annotators (ECMT, SIFR, cTAKES, and MetaMap) to assess whether complexity-related concepts could be extracted from clinical notes. On a sample of 24 BCPSs covering 35 complexity reasons, ECMT and MetaMap were the most efficient systems with a performance rate of 60% (21/35) and 49% (17/35), respectively. When using the four annotators in sequence, 69% of complexity reasons were extracted (24/35 reasons).
Most clinical texts including breast cancer patient summaries (BCPSs) are elaborated as narrative documents difficult to process by decision support systems. Annotators have been developed to extract the relevant content of such documents, e.g., MetaMap and cTAKES, that work with the English language and perform concept mapping using UMLS, SIFR and ECMT, that work for the French language and provide concepts using various terminologies. We compared the four annotators on a sample of 25 French BCPSs, pre-processed to manage acronyms and translated in English. We observed that MetaMap extracted the largest number of UMLS concepts (15,458), followed by SIFR (3,784), ECMT (1,962), and cTAKES (1,769). Each annotator extracted specific valuable information, not proposed by the other annotators. Considered as complementary, all annotators should be used in sequence to optimize the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.