Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4 and H11) but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is
Piscidins were the first antimicrobial peptides discovered in the mast cells of vertebrates. While two family members, piscidin 1 (p1) and piscidin 3 (p3), have highly similar sequences and α-helical structures when bound to model membranes, p1 generally exhibits stronger antimicrobial and hemolytic activity than p3 for reasons that remain elusive. In this study, we combine activity assays and biophysical methods to investigate the mechanisms underlying the cellular function and differing biological potencies of these peptides, and report findings spanning three major facets. First, added to Gram-positive (Bacillus megaterium) and Gram-negative (Escherichia coli) bacteria at sublethal concentrations and imaged by confocal microscopy, both p1 and p3 translocate across cell membranes and colocalize with nucleoids. In E. coli, translocation is accompanied by nonlethal permeabilization that features more pronounced leakage for p1. Second, p1 is also more disruptive than p3 to bacterial model membranes, as quantified by a dye-leakage assay and (2)H solid-state NMR-monitored lipid acyl chain order parameters. Oriented CD studies in the same bilayers show that, beyond a critical peptide concentration, both peptides transition from a surface-bound state to a tilted orientation. Third, gel retardation experiments and CD-monitored titrations on isolated DNA demonstrate that both peptides bind DNA but p3 has stronger condensing effects. Notably, solid-state NMR reveals that the peptides are α-helical when bound to DNA. Overall, these studies identify two polyreactive piscidin isoforms that bind phosphate-containing targets in a poised amphipathic α-helical conformation, disrupt bacterial membranes, and access the intracellular constituents of target cells. Remarkably, the two isoforms have complementary effects; p1 is more membrane active, while p3 has stronger DNA-condensing effects. Subtle differences in their physicochemical properties are highlighted to help explain their contrasting activities.
Symbiotic relationships help shape immune fitness. Chen et al. demonstrate that microbial symbionts influence host immunity by enriching frequencies of antibacterial specificities within the naive B cell receptor repertoire and that this may have consequences for mucosal and systemic immunity.
Literature supports the potential benefit of implementing a separate MHSUD spending risk adjustment formula. Our results suggest there is an incentive to explore machine learning for MHSUD-specific risk adjustment, as well as considering CCS categories over HCCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.