In this article, we propose and analyze an infectious disease model with reinfection and investigate disease dynamics by incorporating saturated treatment and information effect. In the model, we consider the case where an individual's immunity deteriorates and they become infected again after recovering. According to our findings, multiple steady states and backward bifurcation may occur as a result of treatment saturation. Further, if treatment is available for all, the disease will be eradicated provided R 0 < 1; however, because limited medical resources caused saturation in treatment, the disease may persist even if R 0 < 1. The global stability of the unique endemic steady state is established using a geometric approach. We also establish certain conditions on the transmission rate for the occurrence of periodic oscillations in the model system. Among nonlinear dynamics, we show supercritical Hopf bifurcation, bi-stability, backward Hopf bifurcation, and double Hopf bifurcation. To illustrate and validate our theoretical results, we present numerical examples. We found that when disease information coverage is high, infection cases fall considerably, and the disease persists when the reinfection rate is high. We then extend our model by incorporating two time-dependent controls, namely inhibitory interventions and treatment. Using Pontryagin's maximum principle, we prove the existence of optimal control paths and find the optimal pair of controls. According to our numerical simulations, the second control is less effective than the first. Furthermore, while implementing a single intervention at a time may be effective, combining both interventions is most effective in reducing disease burden and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.