Recently, skyline queries have attracted much attention in the database research community. Space partitioning techniques, such as recursive division of the data space, have been used for skyline query processing in centralized, parallel and distributed settings. Unfortunately, such grid-based partitioning is not suitable in the case of a parallel skyline query, where all partitions are examined at the same time, since many data partitions do not contribute to the overall skyline set, resulting in a lot of redundant processing.In this paper we propose a novel angle-based space partitioning scheme using the hyperspherical coordinates of the data points. We demonstrate both formally as well as through an exhaustive set of experiments that this new scheme is very suitable for skyline query processing in a parallel sharenothing architecture. The intuition of our partitioning technique is that the skyline points are equally spread to all partitions. We also show that partitioning the data according to the hyperspherical coordinates manages to increase the average pruning power of points within a partition. Our novel partitioning scheme alleviates most of the problems of traditional grid partitioning techniques, thus managing to reduce the response time and share the computational workload more fairly. As demonstrated by our experimental study, our technique outperforms grid partitioning in all cases, thus becoming an efficient and scalable solution for skyline query processing in parallel environments.
During the last decades, data management and storage have become increasingly distributed. Advanced query operators, such as skyline queries, are necessary in order to help users to handle the huge amount of available data by identifying a set of interesting data objects. Skyline query processing in highly distributed environments poses inherent challenges and demands and requires non-traditional techniques due to the distribution of content and the lack of global knowledge. This paper surveys this interesting and still evolving research area, so that readers can easily obtain an overview of the state-of-the-art. We outline the objectives and the main principles that any distributed skyline approach has to fulfill, leading to useful guidelines for developing algorithms for distributed skyline processing. We review in detail existing approaches that are applicable for highly distributed environments, clarify the assumptions of each approach, and provide a comparative performance analysis. Moreover, we study the skyline variants each approach supports. Our analysis leads to a taxonomy of existing approaches. Finally, we present interesting research topics on distributed skyline computation that have not yet been explored.
Abstract-Nowadays, most applications return to the user a limited set of ranked results based on the individual user's preferences, which are commonly expressed through top-k queries. From the perspective of a manufacturer, it is imperative that her products appear in the highest ranked positions for many different user preferences, otherwise the product is not visible to potential customers. In this paper, we define a novel query type, namely the reverse top-k query, that covers this requirement: "Given a potential product, which are the user preferences that make this product belong to the top-k query result set?". Reverse top-k queries are essential for manufacturers to assess the impact of their products in the market based on the competition. We formally define reverse top-k queries and introduce two versions of the query, monochromatic and bichromatic. First, we provide a geometric interpretation of the monochromatic reverse topk query to acquire an intuition of the solution space. Then, we study in detail the case of bichromatic reverse top-k query, and we propose two techniques for query processing, namely an efficient thresholdbased algorithm and an algorithm based on materialized reverse topk views. Our experimental evaluation demonstrates the efficiency of our techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.