Electron capture and ionisation in bare neon ion collisions with ground-state atomic hydrogen are modelled over the energy range from 1 to 2000 keV/u using the two-center semiclassical wave-packet convergent close- coupling method. The calculated total electron-capture cross section agrees very well with the molecular and atomic orbital close-coupling calculations at low and intermediate energies. Our results slightly overestimate the experimental results by Meyer et al. [Phys. Rev. A 32, 3310 (1985)], but underestimate the measurements by Panov et al. [Phys. Scr. T3, 124 (1983)] available only below 10 keV/u. At higher energies, where there are no measurements, the results also agree very well with the classical trajectory Monte-Carlo results. Partial n and nl-resolved electron-capture cross sections, important for fusion plasma diagnostics, have also been calculated for final states up to n = 10, where n and l are the final state principal and angular momentum quantum numbers, respectively. The results are generally in good agreement with the atomic calculations. However, due to the finer energy grid used, we are able to detect pronounced oscillations in the state-selective cross sections for n ≥ 8 at energies below 10 keV/u. Our results for the total ionisation cross section are overall in good agreement with the latest classical trajectory Monte-Carlo results.
The two-center wave-packet convergent close-coupling method has been applied to model the processes of electron capture and ionisation in collisions of fully stripped neon and lithium ions with atomic hydrogen at projectile energies from 1 keV/u to 1 MeV/u. For the Ne10+ projectile, the resulting total electron-capture cross section lies between the two sets of experimental results available for system, which differ from each other significantly. For Li3+, our total electron-capture cross section agrees with the available experimental measurements by Shah et al. [J. Phys. B: At. Mol. Opt. Phys 11, L233 (1978)] and Seim et al. [J. Phys. B: At. Mol. Opt. Phys 14, 3475 (1981)], particularly at low and high energies. We also get good agreement with the existing theoretical works, particularly the atomic- and molecular-orbital close-coupling calculations. Our total ionisation cross section overestimates the experimental data by Shah et al. [J. Phys. B: At. Mol. Opt. Phys 15, 413 (1982)] at the peak, however we get good agreement with the other existing theoretical calculations at low and high energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.