Introduction: The paper addresses the effect of a composite modifying mineral additive based on waste — tailings from the Balkhash Mining and Processing Plant — and microsilica on the structural characteristics and performance of heavy concrete. Purpose of the study: We aimed to select optimal B25 and B35 concrete mixes based on the MV-D20 modified binder with the composite additive in its composition and evaluate the characteristics of concrete. Methods: In the course of the study, standard methods were used to design concrete mixes and test the characteristics of concrete. Proportioning was performed in accordance with State Standard GOST 27006-86 “Concretes. Rules for Mix Proportioning”. The physical and mechanical properties of heavy concrete were determined in accordance with State Standard GOST 10180-2012 “Concretes. Methods for Strength Determination Using Reference Specimens”. The strength of concrete was assessed in accordance with State Standard GOST 18105-2018 “Concretes. Rules for Control and Assessment of Strength”. Results: It was established that in terms of the rate of strength gain, the designed heavy concrete mixes are fast-curing. In the initial curing period of 7 days, B25 and B35 concretes gain 90.1 and 85.4% of the required standard strength, respectively. The average values of water absorption in B25 and B35 concretes are 4.20 and 3.46%, respectively. In terms of water tightness, concrete mixes have W10 and W12 grades. The application of the MV-D20 modified binder with the composite additive consisting of tailings and microsilica instead of standard sulfate-resistant Portland cement will reduce the relative deformation of B35 concrete in an aggressive environment by 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.