Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO 2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (∼ +8%). On the other hand, these contrails are composed of larger diameter crystals (∼ +58%) at lower number concentrations (∼ −75%), reducing both contrail optical depth (∼ −29%) and albedo (∼ −32%). The net changes in contrail RF induced by switching to biofuels range from −4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between −13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming-contrary to previous expectations of a significant decrease in warming.
Aviation emissions have been found to cause 5% of global anthropogenic radiative forcing and ∼16 000 premature deaths annually due to impaired air quality. When aiming to reduce these impacts, decision makers often face trade-offs between different emission species or impacts in different times and locations. To inform rational decision-making, this study computes aviation's marginal climate and air quality impacts per tonne of species emitted and accounts for the altitude, location, and chemical composition of emissions. Climate impacts are calculated using a reduced-order climate model, and air quality-related health impacts are quantified using marginal atmospheric sensitivities to emissions from the adjoint of the global chemistry-transport model GEOS-Chem in combination with concentration response functions and the value of statistical life. The results indicate that 90% of the global impacts per unit of fuel burn are attributable to cruise emissions, and that 64% of all damages are the result of air quality impacts. Furthermore, nitrogen oxides (NO x ), carbon dioxide (CO 2 ), and contrails are collectively responsible for 97% of the total impact. Applying our result metrics to an example, we find that a 20% NO x stringency scenario for new aircraft would reduce the net atmospheric impacts by 700 m USD during the first year of operation, even if the NO x emission reductions cause a small increase in CO 2 emissions of 2%. In such a way, the damage metrics can be used to rapidly evaluate the atmospheric impacts of market growth as well as emissions trade-offs of aviation-related policies or technology improvements.
Black carbon (BC) emissions from aircraft engines lead to an increase in the atmospheric burden of fine particulate matter (PM2.5). Exposure to PM2.5 from sources including aviation is associated with an increased risk of premature mortality, and BC suspended in the atmosphere has a warming impact on the climate. BC particles emitted from aircraft also serve as nuclei for contrail ice particles, which are a major component of aviation's climate impact. In order to facilitate the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.