In this paper, we investigate an application of image generation for river satellite imagery. Specifically, we propose a generative adversarial network (GAN) model capable of generating high-resolution and realistic river images that can be used to support models in surface water estimation, river meandering, wetland loss and other hydrological research studies. First, we summarized an augmented, diverse repository of overhead river images to be used in training. Second, we incorporate the Progressive Growing GAN (PGGAN), a network architecture that iteratively trains smaller-resolution GANs to gradually build up to a very high resolution, to generate 256x256 river satellite imagery. With conventional GAN architectures, difficulties soon arise in terms of exponential increase of training time and vanishing/exploding gradient issues, which the PGGAN implementation seems to significantly reduce. Our preliminary results show great promise in capturing the detail of river flow and green areas present in river satellite images that can be used for supporting hydroinformatics studies.
In this paper, we demonstrated a practical application of realistic river image generation using deep learning. Specifically, we explored a generative adversarial network (GAN) model capable of generating high-resolution and realistic river images that can be used to support modeling and analysis in surface water estimation, river meandering, wetland loss, and other hydrological research studies. First, we have created an extensive repository of overhead river images to be used in training. Second, we incorporated the Progressive Growing GAN (PGGAN), a network architecture that iteratively trains smaller-resolution GANs to gradually build up to a very high resolution to generate high quality (i.e., 1,024 × 1,024) synthetic river imagery. With simpler GAN architectures, difficulties arose in terms of exponential increase of training time and vanishing/exploding gradient issues, which the PGGAN implementation seemed to significantly reduce. The results presented in this study show great promise in generating high-quality images and capturing the details of river structure and flow to support hydrological modeling and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.