During 'active touch' the rodent whiskers scan the environment in a series of repetitive movements ('whisks') generating afferent signals which transform the spatial properties of objects into spatio-temporal patterns of neural activity. Based upon analyses carried out in a single movement plane, it has been generally assumed that these trajectories are essentially uni-dimensional, although more complex movements have been described in some rodents. The present study was designed to examine this assumption and to more precisely characterize whisking topography by monitoring whisking trajectories along both the antero-posterior and dorso-ventral axes. Using optoelectronic monitoring techniques with high-spatio-temporal resolution, movement data were obtained from a population of vibrissae sampled at different locations on the mystacial pad in head-fixed rats isolated from the perturbing effects of contact. For a substantial proportion of the population of whisking movements sampled, the trajectories generated by a single whisker is most accurately described as occupying an expended two-dimensional space in which the A-P component predominates. However, the whisker system exhibits a considerable range of trajectory types, suggesting a high degree of movement flexibility. For each vibrissa position, it was possible to delineate a 'trajectory' domain-that portion of the animal's whisking space which is scanned by the movements of that vibrissa during whisking. Since the 'domains' of adjacent whiskers in the same row tend to overlap, synchronized movements of a subset of whiskers could generate a set of overlapping somatosensory fields analogous to overlapping retinal receptive fields. The organization of such trajectory domains within the rats' whisking space could provide the spatial component of the spatio-temporal integration process required to extract information about environmental features from the inputs generated by its recursive whisking movements.
Laboratory training and testing of auditory recognition skills in animals is important for understanding animal communication systems that depend on auditory cues. Songbirds are commonly studied because of their exceptional ability to learn complex vocalizations. In recent years, mounting interest in the perceptual abilities of songbirds has increased the demand for laboratory behavioural training and testing paradigms. Here, we describe and demonstrate the success of a method for auditory discrimination experiments, including all the necessary hardware, training procedures and freely-available, versatile software. The system can run several behavioural training and testing paradigms, including operant (go-nogo, stimulus preference, and two-alternative forced choice) and classical conditioning tasks. The software and some hardware components can be used with any laboratory animal that learns and responds to sensory cues. The peripheral hardware and training procedures are designed for use with songbirds and auditory stimuli. Using the go-nogo paradigm of the training system, we show that adult zebra finches learn to recognize and correctly classify individual female calls and male songs. We also show that learning the task generalizes to new stimulus classes; birds that learned the task with calls subsequently learned to recognize songs faster than did birds that learned the task and songs at the same time.
Female songbirds use male songs as an important criterion for mate selection. Several studies have reported that female songbirds prefer complex songs to other song types. In a recent study, the authors found that song responsiveness in female zebra finches (Taeniopygia guttata) is strongly modulated by circulating estrogen levels. The behavioral effects of estrogen are often mediated via norepinephrine (NE). The current study administered the noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) to estradiol-treated female zebra finches to investigate if estrogenic effects on song responsiveness are mediated via NE. The authors tested song responsiveness of adult female zebra finches for three acoustically different song types--simple, long-bout, and complex--under three treatment conditions, untreated, estradiol-treated, and estradiol + DSP-4-treated. Females only showed differential song responsiveness when treated with estradiol alone, responding more to complex songs. DSP-4 treatment eliminated this differential responsiveness. The results are discussed in the light of evidence from functional, neurochemical, and neuroanatomical studies that suggest that estrogenic effects on song processing might be mediated by NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.