Deep neural networks have shown promising success towards the classification and retrieval tasks for images and text data. While there have been several implementations of deep networks in the area of computer graphics, these algorithms do not translate easily across different datasets, especially for shapes used in product design and manufacturing domain. Unlike datasets used in the 3D shape classification and retrieval in the computer graphics domain, engineering level description of 3D models do not yield themselves to neat distinct classes. The current study looks at an improved form of the 3D shape deep learning algorithm for classification and retrieval through the use of techniques such as relaxed classification, use of prime angled camera angles for capturing feature detail and transfer learning for reducing the amount of data and processing time needed to train shape recognition algorithms. The proposed algorithm (MVCNN++) builds on top of multi-view convolutional neural network (MVCNN) algorithm, improving its efficacy for manufacturing part classification by enabling use of part metadata, yielding an improvement of almost 6% over the original version. With the explosive growth of 3D product models available in publicly available repositories, search and discovery of relevant models is critical to democratizing access to design models.
Data driven advanced manufacturing research is dependent on access to large datasets made available from across the product lifecycle — from the concept design phase all the way down to end use and disposal. Despite such data being generated at a rapid pace, most product design data is archived in inaccessible silos. This is particularly acute in academic research laboratories and with data generated during product design and manufacturing courses. This project seeks to create an infrastructure that allow users (academia and the general public) to easily upload project data and related meta-data. Current manufacturing research must shift from siloed repositories of product manufacturing data to a federated, decentralized, open and inter-operable approach. In this regard, we build ‘FabWave’ a cyber-infrastructure tool designed to capture manufacturing data. In its first pilot implementation, we focused our attention to gathering information rich 3D Mechanical CAD data and related meta-data associated with them, with the intent to make it easier for users to upload and access product design data. We describe workflows that we have initially tested out within the two academic universities and under two different course structures. We have also developed automated workflows to gather license appropriate CAD assemblies from commercial repositories. Our intent is to create the only known largest available CAD model set within academia for enabling research in data-driven computational research in digital design, fabrication and quality control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.