Surprisingly, when biasing near a transport resonance, we observe cooling of the nanomechanical mode from 550 mK to 300 mK. These measurements have implications for nanomechanical readout of quantum information devices and the limits of ultra-sensitive force microscopy, e.g. single nuclear spin magnetic resonance force microscopy. Furthermore, we anticipate the use of these backaction effects to prepare ultra-cold and quantum states of mechanical structures, which would not be accessible with existing technology.In practice, these back-action impulses arise from the quantized and stochastic nature of the fundamental particles utilized in the measuring device. For example, in high precision optical interferometers such as the LIGO gravitational wave detector 4 or in the single-spin force microscope 5 , the position of a test mass is monitored by reflecting laser-light off of the measured object and interfering this light with a reference beam at a detector. The measured signal is the arrival rate of photons, and one might say that the optical "conductance" of the interferometer is modulated by the position of the measured object. Back-action forces which stochastically drive the measured object result from the random impact and momentum transfer of the discrete photons. This mechanical effect of light is thought to provide the ultimate limit to the position and force sensitivity of an optical interferometer. Although this photon "ponderomotive" noise has not yet been detected during the measurement of a macroscopic object 6 , these back-action effects are clearly observed and carefully utilized in the cooling of dilute atomic vapors to nanoKelvin temperatures.In the experiments reported here, we study an SSET which is capacitively coupled to a voltage-biased (V NR ), doubly-clamped nanomechanical resonator (Fig. 1). Like the interferometer, the conductance of the SSET is a very sensitive probe of the resonator's position, whereas the particles transported in this case are a mixture of single andCooper-paired electrons. We have recently shown the SSET to be nearly a quantumlimited position detector 7 , however reaching the best sensitivity will ultimately be limited by the back-action of the charged particles 3 , which could not be observed in previous experiments because of insufficient SSET-resonator coupling.The back-action force of the SSET results in three measurable effects on the resonator: a frequency shift, a damping rate, and position fluctuations. The frequency shift and damping rate are caused by the in-phase and small out-of phase response in the average electrostatic force between the SSET and resonator, as the resonator oscillates. .MHz is clearly visible, and accurately fits a simple harmonic oscillator response function, on top of a white power spectrum due to an ultra-low noise microwave preamplifier used to read out the SSET with microwave reflectometry 8 .For low SSET-nanoresonator coupling strengths, and the SSET biased close to the Josephson Quasiparticle Peak (JQP) 9 , T NR simply follows T ...
Mass spectrometry (MS) provides rapid and quantitative identification of protein species with relatively low sample consumption. Yet with the trend toward biological analysis at increasingly smaller scales, ultimately down to the volume of an individual cell, MS with few-to-single molecule sensitivity will be required. Nanoelectromechanical systems (NEMS) provide unparalleled mass sensitivity, which is now sufficient for the detection of individual molecular species in real time. Here we report the first demonstration of MS based on single-biological-molecule detection with NEMS. In our NEMS-MS system, nanoparticles and protein species are introduced by electrospray injection from fluid phase in ambient conditions into vacuum and subsequently delivered to the NEMS detector by hexapole ion optics. Precipitous frequency shifts, proportional to the mass, are recorded in real time as analytes adsorb, one-by-one, onto a phase-locked, ultrahigh frequency NEMS resonator. These first NEMS-MS spectra, obtained with modest mass sensitivity from only several hundred mass adsorption events, presage the future capabilities of this approach. We also outline the substantial improvements that are feasible in the near term, some of which are unique to NEMS-MS.
Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.