Chemokines make up a superfamily of ∼50 small secreted proteins (8-12 kDa) involved in a host of physiological processes and disease states, with several previously shown to have direct antimicrobial activity comparable to that of defensins in efficacy. XCL1 is a unique metamorphic protein that interconverts between the canonical chemokine fold and a novel all-β-sheet dimer. Phylogenetic analysis suggests that, within the chemokine family, XCL1 is most closely related to CCL20, which exhibits antibacterial activity. The in vitro antimicrobial activity of WT-XCL1 and structural variants was quantified using a radial diffusion assay (RDA) and in solution bactericidal assays against Gram-positive and Gram-negative species of bacteria. Comparisons of WT-XCL1 with variants that limit metamorphic interconversion showed a loss of antimicrobial activity when restricted to the conserved chemokine fold. These results suggest that metamorphic folding of XCL1 is required for potent antimicrobial activity.
θ-defensins constitute a family of macrocyclic peptides expressed exclusively in Old World monkeys. The peptides are pleiotropic effectors of innate immunity, possessing broad spectrum antimicrobial activities and immunoregulatory properties. Here we report that rhesus θ-defensin 1 (RTD-1) is highly effective in arresting and reversing joint disease in a rodent model of rheumatoid arthritis (RA). Parenteral RTD-1 treatment of DA/OlaHsd rats with established pristane-induced arthritis (PIA) rapidly suppressed joint disease progression, restored limb mobility, and preserved normal joint architecture. RTD-1 significantly reduced joint IL-1β levels compared with controls. RTD-1 dose-dependently inhibited fibroblast-like synoviocyte (FLS) invasiveness and FLS IL-6 production. Consistent with the inhibition of FLS invasiveness, RTD-1 was a potent inhibitor of arthritogenic proteases including ADAMs 17 and 10 which activate TNFα, and inhibited matrix metalloproteases, and cathepsin K. RTD-1 was non-toxic, non-immunogenic, and effective when administered as infrequently as once every five days. Thus θ-defensins, which are absent in humans, have potential as retroevolutionary biologics for the treatment of RA.
Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1–5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1β-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.