Future advancements in robot autonomy and sophistication of robotics tasks rest on robust, efficient, and taskdependent semantic understanding of the environment. Semantic segmentation is the problem of simultaneous segmentation and categorization of a partition of sensory data. The majority of current approaches tackle this using multi-class segmentation and labeling in a Conditional Random Field (CRF) framework [19] or by generating multiple object hypotheses and combining them sequentially [2]. In practical settings, the subset of semantic labels that are needed depend on the task and particular scene and labelling every single pixel is not always necessary. We pursue these observations in developing a more modular and flexible approach to multi-class parsing of RGBD data based on learning strategies for combining independent binary object-vsbackground segmentations in place of the usual monolithic multilabel CRF approach. Parameters for the independent binary segmentation models can be learned very efficiently, and the combination strategy-learned using reinforcement learningcan be set independently and can vary over different tasks and environments. Accuracy is comparable to state-of-art methods on a subset of the NYU-V2 dataset of indoor scenes [24] , while providing additional flexibility and modularity.
Deep neural networks have revolutionized many areas of computer vision, but they require notoriously large amounts of labeled training data. For tasks such as semantic segmentation and monocular 3d scene layout estimation, collecting high-quality training data is extremely laborious because dense, pixellevel ground truth is required and must be annotated by hand. In this paper, we present two techniques for significantly reducing the manual annotation effort involved in collecting large training datasets. The tools are designed to allow rapid annotation of entire videos collected by RGBD cameras, thus generating thousands of ground-truth frames to use for training. First, we propose a fully-automatic approach to produce dense pixel-level semantic segmentation maps. The technique uses noisy evidence from pre-trained object detectors and scene layout estimators and incorporates spatial and temporal context in a conditional random field formulation. Second, we propose a semi-automatic technique for dense annotation of 3d geometry, and in particular, the 3d poses of planes in indoor scenes. This technique requires a human to quickly annotate just a handful of keyframes per video, and then uses the camera poses and geometric reasoning to propagate these labels through an entire video sequence. Experimental results indicate that the technique could be used as an alternative or complementary source of training data, allowing large-scale data to be collected with minimal human effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.