Clinical studies from WHO have demonstrated that only 50–70% of patients adhere properly to prescribed drug therapy. Such adherence failure can impact therapeutic efficacy for the patients in question and compromises data quality around the population-level efficacy of the drug for the indications targeted. In this study, we applied various ensemble learning and deep learning models to predict medication adherence among patients. Our contribution to this endeavour involves targeting the problem of adherence prediction for a particularly challenging class of patients who self-administer injectable medication at home. Our prediction pipeline, based on event history, comprises a connected sharps bin which aims to help patients better manage their condition and improve outcomes. In other words, the efficiency of interventions can be significantly improved by prioritizing the patients who are most likely to be non-adherent. The collected data comprising a rich event feature set may be exploited for the purposes of predicting the status of the next adherence state for individual patients. This paper reports on how this concept can be realized through an investigation using a wide range of ensemble learning and deep learning models on a real-world dataset collected from such a system. The dataset investigated comprises 342,174 historic injection disposal records collected over the course of more than 5 years. A comprehensive comparison of different models is given in this paper. Moreover, we demonstrate that the selected best performer, long short-term memory (LSTM), generalizes well by deploying it in a true future testing dataset. The proposed end-to-end pipeline is capable of predicting patient failure in adhering to their therapeutic regimen with 77.35 % accuracy (Specificity: 78.28 %, Sensitivity: 76.42%, Precision: 77.87%,F1 score: 0.7714, ROC AUC: 0.8390).
Medication non-adherence is a widespread problem affecting over 50% of people who have chronic illness and need chronic treatment [1]. Non-adherence exacerbates health risks and drives significant increases in treatment costs. In order to address these challenges, the importance of predicting patients' adherence has been recognised. In other words, it is important to improve the efficiency of interventions of the current healthcare system by prioritizing resources to the patients who are most likely to be non-adherent. Our objective in this work is to make predictions regarding individual patients' behaviour in terms of taking their medication on time during their next scheduled medication opportunity. We do this by leveraging a number of machine learning models. In particular, we demonstrate the use of a connected IoT device; a "Smart Sharps Bin", invented by HealthBeacon Ltd.; to monitor and track injection disposal of patients in their home environment. Using extensive data collected from these devices, five machine learning models, namely Extra Trees Classifier, Random Forest, XGBoost, Gradient Boosting and Multilayer Perception were trained and evaluated on a large dataset comprising 165,223 historic injection disposal records collected from 5,915 HealthBeacon units over the course of 3 years. The testing work was conducted on real-time data generated by the smart device over a time period after the model training was complete, i.e. true future data. The proposed machine learning approach demonstrated very good predictive performance exhibiting an Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 0.86.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.