Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids.
Neural crest cells (NCCs) are a multipotent and migratory cell population in the developing embryo that contribute to the formation of a wide range of tissues. Defects in the development, differentiation and migration of NCCs give rise to a class of syndromes and diseases that are known as neurocristopathies. NCC development has historically been studied in a variety of animal models, including xenopus, chick and mouse. In the recent years, there have been efforts to study NCC development and disease in human specific models, with protocols being established to derive NCCs from human pluripotent stem cells (hPSCs), and to further differentiate these NCCs to neural, mesenchymal and other lineages. These
in vitro
differentiation platforms are a valuable tool to gain a better understanding of the molecular mechanisms involved in human neural crest development. The use of induced pluripotent stem cells (iPSCs) derived from patients afflicted with neurocristopathies has also enabled the study of defective human NCC development using these
in vitro
platforms. Here, we review the various
in vitro
strategies that have been used to derive NCCs from hPSCs and to specify NCCs into cranial, trunk, and vagal subpopulations and their derivatives. We will also discuss the potential applications of these human specific NCC platforms, including the use of iPSCs for disease modeling and the potential of NCCs for future regenerative applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.