Asthma is a clinical disorder commonly characterized by chronic eosinophilic inflammation, remodeling and hyper responsiveness of the airways. However, the kinases like Phosphoinositide 3 kinase (PI3K) and Janus kinase 3 (JAK3) are involved in mast cell proliferation, activation, recruitment, migration, and prolonged survival of inflammatory cells. The present study was designed to evaluate the in-vivo comparative effects of two kinase inhibitors on airway inflammation and airway remodeling in acute and chronic models of asthma. Mice were sensitized twice intra-peritoneally and then challenged by inhalation with ovalbumin (OVA). They developed an extensive inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening similar to pathologies observed in human asthma. The effects of PI3K inhibitor (30 mg/kg, p.o), JAK3 inhibitor (30 mg/kg, p.o) and Dexamethasone (0.3 mg/kg) on airway inflammation and remodeling in OVA sensitized/challenged BALB/c mice were evaluated. Twenty-four hours after the final antigen challenge, bronchoalveolar lavage (BAL) and histological examinations were carried out. It was observed that kinase inhibitors significantly reduced airway inflammation as evidenced by the decrease in pro inflammatory cytokines in BALF and lung homogenate and inflammatory cell count in sensitized mice after allergen challenge. Lung histological analysis showed increased infiltration of inflammatory cells, hyperplasia of goblet cells and the collagen deposition, which were significantly reduced with kinase inhibitor. In conclusion, our data suggest that PI3K and JAK3 inhibitors showed promising alternative therapeutic activity in asthma, which might significantly counteract the airway inflammation in patients with allergic asthma.
Voltage-gated sodium channel Na V 1.7 is a genetically validated target for pain. Identification of Na V 1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure−activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and statedependent Na V 1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over Na V 1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.