<p>IoT devices constantly communicate with servers over the Internet, allowing an attacker to extract sensitive information by passively monitoring the network traffic. Recent research works have shown that a network attacker with a trained machine learning (ML) model can accurately fingerprint IoT devices learned from the (encrypted) traffic flows of the devices. Such fingerprinting attacks are capable of revealing the make and model of the devices, which can further be used to extract detailed user activities.</p> <p>In this work, we develop and propose iPET, a novel adversarial perturbation-based traffic modification system that defends against fingerprinting attacks. iPET design employs GAN (Generative Adversarial Networks) in a tuneable way, allowing users to specify the maximum bandwidth overhead they are willing to tolerate for the defense. A fundamental idea of iPET is to deliberately introduce stochasticity between model instances. This approach limits a counter attack, as it inhibits an attacker from recreating an identical perturbation model and using it for fingerprinting. We evaluate the effectiveness of our defense against state-of-the-art fingerprinting models and with three different attacker capabilities. Our evaluations on synthetic and real-world datasets demonstrate that iPET decreases the accuracy of even the potent attackers. We also show that the traffic perturbations generated by iPET generalize well to different fingerprinting schemes that an attacker may deploy.</p>
<div>IoT devices are vulnerable to different kinds of threats and attacks. The devices constantly communicate with servers over the Internet, allowing an attacker to extract sensitive information by passively monitoring the network traffic. Recent research works have shown that a network attacker with a trained machine learning (ML) model can accurately fingerprint IoT devices based on the (encrypted) traffic flows of the devices. Such fingerprinting attacks are capable of revealing the make and model of the devices, which can further be used to extract detailed user activities.</div><div><br></div><div>In this work, we develop and propose iPET, a privacy enhancing traffic perturbation technique that counters ML-based fingerprinting attacks. iPET uses adversarial deep learning, specifically, Generative Adversarial Networks (GANs), to generate these perturbations. Unlike conventional GANs, a key idea of iPET is to deliberately introduce stochasticity in the model. This approach inhibits an attacker from recreating an identical perturbation model and using it for fingerprinting. We evaluate the effectiveness of our defense against state-of-the-art fingerprinting models three different attacker capabilities. Our evaluations on synthetic and real-world datasets demonstrate that iPET decreases the accuracy of even the most powerful attacker significantly.</div>
<div>IoT devices are vulnerable to different kinds of threats and attacks. The devices constantly communicate with servers over the Internet, allowing an attacker to extract sensitive information by passively monitoring the network traffic. Recent research works have shown that a network attacker with a trained machine learning (ML) model can accurately fingerprint IoT devices based on the (encrypted) traffic flows of the devices. Such fingerprinting attacks are capable of revealing the make and model of the devices, which can further be used to extract detailed user activities.</div><div><br></div><div>In this work, we develop and propose iPET, a privacy enhancing traffic perturbation technique that counters ML-based fingerprinting attacks. iPET uses adversarial deep learning, specifically, Generative Adversarial Networks (GANs), to generate these perturbations. Unlike conventional GANs, a key idea of iPET is to deliberately introduce stochasticity in the model. This approach inhibits an attacker from recreating an identical perturbation model and using it for fingerprinting. We evaluate the effectiveness of our defense against state-of-the-art fingerprinting models three different attacker capabilities. Our evaluations on synthetic and real-world datasets demonstrate that iPET decreases the accuracy of even the most powerful attacker significantly.</div>
IoT devices constantly communicate with servers over the Internet, allowing an attacker to extract sensitive information by passively monitoring the network traffic. Recent research works have shown that a network attacker with a trained machine learning (ML) model can accurately fingerprint IoT devices learned from the (encrypted) traffic flows of the devices. Such fingerprinting attacks are capable of revealing the make and model of the devices, which can further be used to extract detailed user activities. In this work, we develop and propose iPET, a novel adversarial perturbation-based traffic modification system that defends against fingerprinting attacks. iPET design employs GAN (Generative Adversarial Networks) in a tuneable way, allowing users to specify the maximum bandwidth overhead they are willing to tolerate for the defense. A fundamental idea of iPET is to deliberately introduce stochasticity between model instances. This approach limits a counter attack, as it inhibits an attacker from recreating an identical perturbation model and using it for fingerprinting. We evaluate the effectiveness of our defense against state-of-the-art fingerprinting models and with three different attacker capabilities. Our evaluations on synthetic and real-world datasets demonstrate that iPET decreases the accuracy of even the potent attackers. We also show that the traffic perturbations generated by iPET generalize well to different fingerprinting schemes that an attacker may deploy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.