Earthworms show a wide spectrum of regenerative potential with certain species like Eisenia fetida capable of regenerating more than two-thirds of their body while other closely related species, such as Paranais litoralis seem to have lost this ability. Earthworms belong to the phylum Annelida, in which the genomes of the marine oligochaete Capitella telata and the freshwater leech Helobdella robusta have been sequenced and studied. Herein, we report the transcriptomic changes in Eisenia fetida (Indian isolate) during regeneration. Following injury, E. fetida regenerates the posterior segments in a time spanning several weeks. We analyzed gene expression changes both in the newly regenerating cells and in the adjacent tissue, at early (15days post amputation), intermediate (20days post amputation) and late (30 days post amputation) by RNAseq based de novo assembly and comparison of transcriptomes. We also generated a draft genome sequence of this terrestrial red worm using short reads and mate-pair reads. An in-depth analysis of the miRNome of the worm showed that many miRNA gene families have undergone extensive duplications. Sox4, a master regulator of TGF-beta mediated epithelial-mesenchymal transition was induced in the newly regenerated tissue. Genes for several proteins such as sialidases and neurotrophins were identified amongst the differentially expressed transcripts. The regeneration of the ventral nerve cord was also accompanied by the induction of nerve growth factor and neurofilament genes. We identified 315 novel differentially expressed transcripts in the transcriptome, that have no homolog in any other species. Surprisingly, 82% of these novel differentially expressed transcripts showed poor potential for coding proteins, suggesting that novel ncRNAs may play a critical role in regeneration of earthworm.
BackgroundPolyglutamine diseases constitute a class of neurodegenerative disorders associated with expansion of the cytosine-adenine-guanine (CAG) triplet, in protein coding genes. Expansion of a polyglutamine tract in the N-terminal of TBP is the causal mutation in SCA17. Brain sections of patients with spinocerebellar ataxia 17 (SCA17), a type of neurodegenerative disease, have been reported to contain protein aggregates of TATA-binding protein (TBP). It is also implicated in other neurodegenerative diseases like Huntington’s disease, since the protein aggregates formed in such diseases also contain TBP. Dysregulation of miR-29a/b is another common feature of neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, and SCA17. Using a cellular model of SCA17, we identified key connections in the molecular pathway from protein aggregation to miRNA dysregulation.MethodsGene expression profiling was performed subsequent to the expression of TBP containing polyglutamine in a cellular model of SCA17. We studied the expression of STAT1 and other interferon-gamma dependent genes in neuronal apoptosis. The molecular pathway leading to the dysregulation of miRNA in response of protein aggregation and interferon release was investigated using RNAi-mediated knockdown of STAT1.ResultsWe show that the accumulation of polyglutamine-TBP in the cells results in interferon-gamma release which in turn signals through STAT1 leading to downregulation of miR-29a/b. We propose that the release of interferons by cells harboring toxic protein aggregates may trigger a bystander effect resulting in loss of neurons. Interferon-gamma also led to upregulation of miR-322 although this effect is not mediated through STAT1.ConclusionsOur investigation shows that neuroinflammation could be an important player in mediating the transcriptional dysregulation of miRNA and the subsequent apoptotic effect of toxic polyglutamine-TBP. The involvement of immunomodulators in polyglutamine diseases holds special therapeutic relevance in the light of recent findings that interferon-gamma can modulate behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.