Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Oxidized phospholipids (OxPLs) promote inflammation as well as low density lipoprotein (LDL) uptake in a variety of physiological and pathological states. Given the anti-inflammatory role of the cytokine IL-10, we investigated its modulatory effect on the production of oxidized phosphatidylcholines (OxPCs) as well as lipid metabolic responses in global myocardial ischemia/reperfusion (I/R) injury. Increased OxPCs levels, by 1-Palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), promoted oxidative stress (OS) and cell death. OxPCs-mediated-OS, resulted in oxidized low-density lipoprotein receptor 1 (LOX-1) activation and upregulated the expression of toll-like receptor 2 (TLR2). IL-10-induced increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulated LOX-1 as well as TLR2 inflammatory responses. Under stress conditions, phosphorylation of sterol regulatory element binding protein 1c (SREBP 1c) was prevented by IL-10. The latter also prevented the generation of OxPCs and reduced their ratio (OxPCs/PCs) during injury. LOX-1 activation also promoted SREBP1c-mediated TGF-βRII expression which was inhibited by IL-10. Both fragmented and non-fragmented OxPCs were elevated during I/R and this effect was attenuated by IL-10. The largest impact (two-threefold change at log 2) was on PAzPC, (1-palmitoyl-2-azelaoyl-sn-glycero-3phosphocholine)-a fragmented OxPC. Thus it appears that among different OxPCs, IL-10 significantly reduces a single molecule (PAzPC)-mediated lipid metabolic responses in cardiomyocytes thereby mitigating inflammation and cell death. One of the important biological phenomenon of all cardiac pathological conditions is increased oxidative stress (OS) through a major contribution by lipid peroxidation byproducts. Reactive oxygen species (ROS) cause oxidation of membrane phospholipids (OxPLs) and the formation of oxidative phosphatidylcholines (OxPCs) 1-3. These OxPCs, particularly fragmented, are implicated in various inflammatory diseases including atherosclerosis and ischemia/reperfusion (I/R) injury in the heart 1,4. It has been suggested that the inflammatory action of OxPLs is mediated by TLR2 but not through TLR4 5. However, steps leading to these OxPCs effects on the receptor modifications are not known. In this regard, esterified PCs undergo enzymatic or non-enzymatic oxidation and form non-fragmented and fragmented OxPCs and perform different biological actions. Non-fragmented OxPCs induce adaptive responses through barrier-protective effects whereas fragmented OxPCs participate in the pathogenesis of diseases including atherosclerosis and other cardiovascular complications. Furthermore, one of the derivatives of the fragmented oxidized phospholipids, 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), is a known potent protein modifier due to a presence of the aldehyde group 6. These OxPCs may bind covalently with free amino groups of different receptors and activate signaling pathways 7,8. The role of these OxPCs in stress-induced cell signal...
Doxorubicin (Dox) is known to cause heart failure in some cancer patients. Despite extensive studies over the past half century, the subcellular basis of Dox-induced cardiomyopathy (DIC) is still elusive. Earlier, we suggested that Dox causes a delayed activation of unfolded protein response (UPR) which may promote mitochondrial Bax activity leading to cardiomyocyte death. As a follow up, using NO donor, S-Nitroso-N-acetyl-d,l-penicillamine (SNAP), and/or NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), we now show that endoplasmic reticulum (ER) stress promotes inflammation through iNOS/NO-induced TLR2 activation. In vivo Dox treatment increased mitochondrial iNOS to promote ER stress as there was an increase in Bip (Grp78) response, proapoptotic CHOP (DDIT3) and ER-mediated Caspase 12 activation. Increased iNOS activity is associated with an increase in TLR2 and TNF-α receptor associated factor 2 (TRAF2). These two together with NF-κB p105/50 expression and a synergistic support through ER stress, promote inflammatory response in the myocardium leading to cell death and ultimately fostering DIC conditions. In the presence of NOS inhibitor, such detrimental effects of Dox were inhibited, suggesting iNOS/NO as key mediators of Dox-induced inflammatory as well as apoptotic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.